• Title/Summary/Keyword: order parameter

Search Result 3,834, Processing Time 0.035 seconds

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Dual-band Planar Monopole Antenna for Autonomous Vehicle (자율주행자동차를 위한 이중대역 평판 모노폴 안테나)

  • Yoon, Yonghyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2019
  • In this paper, a dual-band antenna is proposed for the autonomous vehicle as well as omni-directional. The proposed antenna operates in the 4G/LTE band (1,710~2,170MHz) and 5G/NR band (3,400~3,700MHz). In order to obtain the dual-band operation, the planar monopole antenna is proposed as the novel structure with single port of the 50ohm. To give the properties of dual-band, an additional antenna element with slit was added to the planar monopole antenna, and then a structural adjustment parameter was optimized for achieving the target performance in bands. The planar monopole antenna in the LTE band acts as the coupled feed for the added parasitic radiator in the 5G NR band. The proposed antenna has $38.5{\times}36.0{\times}1.0[mm^3]$ on a ground with diameter of 96mm. From the fabrication and measurement results, the impedance bandwidth (VSWR<2) of the proposed antenna covers 1,480~2,260MHz (LTE band: 1,710~2,170MHz) and 3,310~3,930MHz (5G NR band: 3,400~3,700MHz). The proposed planar monopole antenna also obtained the measured gain and radiation pattern of omni-directional radiation pattern in the anechoic chamber.

Development of a Colorimetric Rapid Detection Method for Organophosphorus and Carbamate Pesticides using Gold Nanoparticle Aggregation Principle (금 나노 입자 응집 원리를 이용한 유기인계와 카바메이트계 비색-신속 농약검출법 개발)

  • Kim, Hyo-In;Lee, Jeong-Eun;Kim, Sol-A;Moon, Hyo-Yeong;Cho, Sung-Rae;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.269-276
    • /
    • 2019
  • A colorimetric rapid detection method based on acetylcholinesterase (AChE) was developed for the analysis of organophosphorus (OP) and carbamate (CB) pesticides. The AChE catalyzes acetylthiocholine into thiocholine having (-) and (+) charges, and the (+) charge results in gold nanoparticle (GNP) aggregation. The in-activation of AChE by OP and CB has been well known. In order to optimize the colorimetric method, optimal dilution times of commercial serum containing AChE, diameter of GNP, and concentration of acetylthiocholine were tested as a key parameter. The colorimetric detection limits of the method were 7.5 ng/mL for both dimethyl amine and carbofuran pesticides in 60% ethanol. No cross-reaction to other chemicals, such as aflatoxin B1 and ochratoxin A, which can be contaminated with pesticides in agricultural products, was observed. Recoveries from lettuce, sesame leaf, and cabbage lettuce spiked with known concentrations of dimethyl amine and carbofuran were found to be ranged from 83.85 to 133.16%. These results indicated that the colorimetric rapid method based on AChE can be a useful tool for the sensitive, specific, rapid, and accurate detection of OP and CB pesticides in fresh vegetables.

Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model (평균-교사 합성곱 순환 신경망 모델을 이용한 약지도 음향 이벤트 검출 시스템의 성능 분석)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • This paper introduces and implements a Sound Event Detection (SED) system based on weakly-supervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by "strongly labeled data" including the event class and activations, "weakly labeled data" including the event class, and "unlabeled data" without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.

Complementary measures for Environmental Performance Evaluation Index of External Space of Green Standard for Energy and Environmental Design for Apartment Complex - Focused on the Respect of Response to Climate Change - (공동주택 녹색건축인증기준의 외부공간 환경성능 평가지표 보완방안 - 기후변화 대응 측면을 중심으로 -)

  • Ye, Tae-Gon;Kim, Kwang-Hyun;Kwon, Young-Sang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • An apartment complex is a building use with great potential to contribute to solving problems related to urban ecological environment and climate change. The first goal of this study is to grasp the current situation of application and limitations of the ecological area rate, which is a representative evaluation index used to evaluate the environmental performance of the external space of an apartment complex in Green Standard for Energy and Environmental Design (G-SEED). The second goal is to propose a prototype of the evaluation index for evaluating greenhouse gas (GHG) reduction performance in order to supplement the evaluation index for the environmental performance of the external space in terms of response to climate change. We analyzed 43 cases of apartment complexes certified according to G-SEED, which was enforced since July 1, 2010, and found application characteristics of each space type and the limitations of ecological area rate. We analyzed overseas green building certification systems such as LEED and BREEAM that derived implications for supplementing the limitations of ecological area rate, which is focused on the evaluation of soil and water circulation function, and set up a development direction of complementary measures. Through analysis of previous studies, relevant regulations and standards, and technical documents of the manufacturer, the heat island mitigation performance of the pavement and roof surfaces of the apartment complex and the carbon uptake performance of the trees in the apartment complex was selected as parameters to yield the GHG reduction performance of the external space of the apartment complex. Finally, a quantitative evaluation method for each parameter and a prototype of the evaluation index for the GHG reduction performance were proposed. As a result of applying the prototype to an apartment complex case, the possibility of adoption and applicability as an evaluation index of G-SEED were proved.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Sound Visualization based on Emotional Analysis of Musical Parameters (음악 구성요소의 감정 구조 분석에 기반 한 시각화 연구)

  • Kim, Hey-Ran;Song, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.104-112
    • /
    • 2021
  • In this study, emotional analysis was conducted based on the basic attribute data of music and the emotional model in psychology, and the result was applied to the visualization rules in the formative arts. In the existing studies using musical parameter, there were many cases with more practical purposes to classify, search, and recommend music for people. In this study, the focus was on enabling sound data to be used as a material for creating artworks and used for aesthetic expression. In order to study the music visualization as an art form, a method that can include human emotions should be designed, which is the characteristics of the arts itself. Therefore, a well-structured basic classification of musical attributes and a classification system on emotions were provided. Also, through the shape, color, and animation of the visual elements, the visualization of the musical elements was performed by reflecting the subdivided input parameters based on emotions. This study can be used as basic data for artists who explore a field of music visualization, and the analysis method and work results for matching emotion-based music components and visualizations will be the basis for automated visualization by artificial intelligence in the future.

DNN based Robust Speech Feature Extraction and Signal Noise Removal Method Using Improved Average Prediction LMS Filter for Speech Recognition (음성 인식을 위한 개선된 평균 예측 LMS 필터를 이용한 DNN 기반의 강인한 음성 특징 추출 및 신호 잡음 제거 기법)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • In the field of speech recognition, as the DNN is applied, the use of speech recognition is increasing, but the amount of calculation for parallel training needs to be larger than that of the conventional GMM, and if the amount of data is small, overfitting occurs. To solve this problem, we propose an efficient method for robust voice feature extraction and voice signal noise removal even when the amount of data is small. Speech feature extraction efficiently extracts speech energy by applying the difference in frame energy for speech and the zero-crossing ratio and level-crossing ratio that are affected by the speech signal. In addition, in order to remove noise, the noise of the speech signal is removed by removing the noise of the speech signal with an average predictive improved LMS filter with little loss of speech information while maintaining the intrinsic characteristics of speech in detection of the speech signal. The improved LMS filter uses a method of processing noise on the input speech signal by adjusting the active parameter threshold for the input signal. As a result of comparing the method proposed in this paper with the conventional frame energy method, it was confirmed that the error rate at the start point of speech is 7% and the error rate at the end point is improved by 11%.

SWAT model calibration/validation using SWAT-CUP III: multi-site and multi-variable model analysis (SWAT-CUP을 이용한 SWAT 모형 검·보정 III: 다중 관측 지점 및 변수를 고려한 분석)

  • Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1143-1157
    • /
    • 2020
  • In this study, a criteria for the SWAT model calibration method in SWAT-CUP which considers multi-site and multi-variable observations was presented. For its application, the SWAT model was simulated using long-term observed flow, soil moisture, and evapotranspiration data in Yongdam study watershed, investigating the hydrological runoff characteristics and water balance in the water cycle analysis. The model was calibrated with different parameter values for each sub-watershed in order to reflect the characteristics of multiple observations through one-by-one calibration, appropriate settings of model simulation run/iteration number (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations), and executions of partial and all run in SWAT-CUP. The flow simulation results of watershed outlet point, ENS 0.85, R2 0.87, and PBIAS -7.6%, were compared with the analysis results (ENS 0.52, R2 0.54, and PBIAS -22.4%) applied in the other batch (i.e., non one-by-one) calibration approach and showed better performances of proposed method. From the simulation results of a total of 15 years, it was found that the total runoff (streamflow) and evapotranspiration rates from precipitation are 53 and 39%, and the ratio of surface runoff and baseflow (i.e., sum of lateral and return flow, and recharge deep aquifer) are 35 and 65%, respectively, in Yongdam watershed. In addition, the analytical amount of available water (i.e., water yield), including the total annual streamflow (daily average 21.8 m3/sec) is 6.96 billion m3 per year (about 540 to 900 mm for sub-watersheds).