• Title/Summary/Keyword: order components

Search Result 5,198, Processing Time 0.035 seconds

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.529-537
    • /
    • 2022
  • The present research is to study the effect of inclined load in a two-dimensional homogeneous orthotropic magneto-thermoelastic solid without energy dissipation with fractional order heat transfer in generalized thermoelasticity with two-temperature. We obtain the solution to the problem with the help of Laplace and Fourier transformations. The field equations of displacement components, stress components and conductive temperature are computed in transformed domain. Further the results are computed in physical domain by using numerical inversion method. The effect of fractional order parameter and inclined load has been depicted on the resulting quantities with the help of graphs.

Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity

  • Lata, Parveen;Zakhmi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.725-735
    • /
    • 2020
  • The present investigation deals with the thermomechanical interactions in an orthotropic thermoelastic homogeneous body in the context of fractional order theory of thermoelasticity due to time harmonic sources. The application of a time harmonic concentrated and distributed sources has been considered to show the utility of the solution obtained. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The effect of frequency on various components has been depicted through graphs.

Implementation of Shipbuilding components and materials management system (선박부품 자재관리시스템 구축 방안)

  • Park, Doo-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.909-910
    • /
    • 2012
  • Shipbuilding is an order made assembly production basically. To build a single vessel, it costs hundreds of thousands small and big parts and million tons of structural steel. From contract to delivery, It takes 2 years of time in general. Shipbuilding parts are supplied order made based in and out of the country. For the cost and efficiency issue, on-time supply of ship parts is critical. Thus, this study suggests the optimum material management system plan of ship components for the best result.

  • PDF

Estimation of mechanical properties of driving parts for automobile considering heat treatment and plastic deformation (열처리 및 소성변형을 고려한 자동차 구동축 부품의 기계적 성질평가)

  • Lee K. O.;Park J. U.;Je J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.260-263
    • /
    • 2004
  • Since Outerrace is one of the components of driving shaft for power train of automobile and transmits high torque, high strength and high toughness are necessary so forging process is adopted to manufacture such parts. Therefore, in order to improve strength and toughness, heat treatment is accomplished after plastic deformation(forging). Because Each component of driving shaft is mounted to automobile after a series of forging, machining and heat treatment, in order to evaluate mechanical properties of such components in use, plastic deformation and heat treatment must be considered. So, in this paper, tensile tests are performed with tensile specimens which have passed through a series of upsetting, machining and heat treatment to evaluate mechanical properties of such components.

  • PDF

Modeling and control of a solenoid for high-speed actuation (솔레노이드의 고속 동작을 위한 모델링 및 제어)

  • Yoo, Seung-Ryeol;Shin, Dong-Hun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • Electronics in modern life have become more miniaturized and precise and new technology of electronic components has made these trends possible. The explosive demand of electronic components needs more high-speed and accurate performance of manufacturing processes. For high-speed actuation, solenoids, voice coil motors and piezo motors have been used. A solenoid actuator characterized by low price, available small size, and convenience is one of the main components of production equipments requiring compact and high-speed actuators. Since these actuators show millisecond order responsiveness, the improvement of 1~2msec is very important in industrial applications. In this paper, the mathematical model of the solenoid is formulated and simulated using SIMULINK$^{(R)}$. To verify the model, the responses for step input with open-loop control is obtained and compared with the simulation result. In order to improve the responsiveness, Hold voltage method is introduced and optimal value between spring constant and hold voltage is suggested.

Simple Harmonic Compensation Scheme for a Grid-connected Inverter in Distributed Generation Systems (분산 전원 시스템을 위한 계통연계 인버터의 간단한 고조파 보상 기법)

  • Lai, Ngoc Bao;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.53-54
    • /
    • 2015
  • A new simple and effective scheme to improve power quality for a grid-connected inverter in distributed generation systems under distorted grid voltages will be presented. The proposed scheme is constructed with two controllers to regulate fundamental and harmonic components separately. In order to accomplish the proposed control scheme, the fourth order band pass filter is used to extract harmonic components from distorted gird voltages. Then, the undesired harmonic components are excellently suppressed by proportional decoupling controller. Experimental results are presented to verify the simplicity and effectiveness of proposed scheme.

  • PDF

Restricted Mixture Designs for Three Factors

  • Nae K. Sung;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.145-172
    • /
    • 1980
  • Draper and Lawrence (1965a) have given mixture designs for three factors when all the mixture components can vary on the entire factor space so that the region of interest is an equilateral triangle in two dimensions. In this paper their work is extended to the cases when the region of interest is an echelon, parallelogram, pentagon or hexagon, because of the restirctions imposed on some or all of the mixture components. The principles used in the choice of appropriate designs are those originally introduced by Box and Draper(1959). It is assumed that a response surface equation of first order is fitted, but there is a possibility of bias error due to presence of second order terms in the true model. Minimum bias designs for several cases of restricted regions of interest are illustrated.

  • PDF

A Study on the mobile application of Fashion Brands

  • Kim, Sung-Hee
    • Journal of Fashion Business
    • /
    • v.14 no.6
    • /
    • pp.134-145
    • /
    • 2010
  • The purpose of this study is 1) to investigate the contents of fashion brand applications and what differences and 2) to scrutinize the reviews of the applications uploaded on the app store in order to suggest strategies on how to apply them to fashion. For the study, twenty-nine free applications from different categories of the fashion brands and three hundred sixty-two reviews of these applications were investigated. The analysis of the study was conducted from June 20th to November 10th of 2010. The results showed that there are four important components for fashion brand applications: conventional information (product information and store information), the purchasing function, the fun element (social networking, blogging, music etc), and the augmented reality technique. These components are formulated based on the brand's marketing strategies. In order to know whether or not these components were successfully composed, user reviews were studied, which revealed that many users were satisfied, but the applications were insufficient to meet all of their needs.

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen;Zakhmi, Himanshi
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.295-305
    • /
    • 2019
  • The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.