References
- Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. http://doi.org/10.1134/S102995991802008X.
- Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. http://doi.org/10.1007/s00419-008-0259-9.
- Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. http://doi.org/10.12989/cac.2020.26.2.185.
- Alzahrani, F.S. and Abbas, I.A. (2020), "Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model", Math., 8(585), 1-11. http://doi.org/10.3390/math8040585.
- Bakoura, A., Bourada, F., Bousahla, A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83. http://doi.org/10/12989/cac.2021.27.1.073. https://doi.org/10.12989/CAC.2021.27.1.073
- Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2021), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://doi.org/10/12989/cac.2021.26.5.439. https://doi.org/10.12989/cac.2020.26.5.439
- Bhatti, M.M., Marin, M., Zeeshan, A. and Abdelsalam, S.I. (2020), "Recent trends in computational fluid dynamics", Front. Phys., 8(4), http://doi.org/10.3389/fphy.2020.593111.
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017a), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromag. Wave. Appl., 31(9), 879-897. http://doi.org/10.1080/09205071.2017.1326851.
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017b), "Rayleigh surface wave propagation in orthotropic thermoelastic solid under three phase lag model", J. Therm. Stress., 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971.
- Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Roy. Astron. Soc., 13, 529-539 https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 614-627. https://doi.org/10.1007/BF01594969.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 20(1), 107-112. https://doi.org/10.1007/BF01591120.
- Das, B. and Lahiri, A. (2015), "Generalized Magneto-thermoelasticity for isotropic media", J. Therm. Stress., 38(2), 210-228. http://doi.org/10.1080/01495739.2014.985564.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 051-64. http://doi.org/10.12989/scs.2021.39.1.051.
- Honig, G. and Hirdes, U. (1984), "A method for numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. http://doi.org/10.1016/0377-0427 (84)90075-x.
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on winkler-pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. http://doi.org/10.12989/sem.2019.7.1.055.
- Kaur, I. and Lata, P. (2019), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(1), 1-13. http://doi.org/10.1186/s40712-019-0107-4.
- Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current in a transversely isotropic magneto-thermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. http://doi.org/10.12989/sem.2016.57.091.
- Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of hall current and two temperature transversely isotropic magneto-thermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. http://doi.org/10.1080/15376494.2016.1196769.
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017b), "Rayleigh waves in anisotropic magneto thermoelastic medium", Couple. Syst. Mech., 6(3), 317-333. http://doi.org/10.12989/csm.2017.6.3.317.
- Lata, P. and Himanshi. (2021a), "Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current", Couple. Syst. Mech., 10(2), 103-121. http://doi.org/10.12989/csm.2021.10.2.103.
- Lata, P. and Himanshi. (2021b), "Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain", Struct. Eng. Mech., 77(3), 315-327. http://doi.org/10.12289/sem.2021.77.3.315.
- Lata, P. and Himanshi. (2021c), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. http://doi.org/10.12989/cme.2021.3.1.057.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12289/sem.2019.70.2.245.
- Lata, P. and Zakhmi, H. (2020), Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity", Struct. Eng. Mech., 73(6), 725-735. http://doi.org/10.12289/sem.2020.73.6.725.
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abs. Appl. Anal., 2013, Article ID 583464. http://doi.org/10.1155/2013/583464.
- Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660. http://doi.org/10.1080/16583655.2020.1763664.
- Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. http://doi.org/10.1063/1.4914912.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., ... & Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://doi.org/10.12989/scs.2021.39.5.631.
- Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives: Theory and applications, Willey.
- Mudhaffar, M.I., Tounsi, A., Chikh, A., AL-Osta, M.A., Alzahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.09.
- Othman, M.I.A. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermomicrostretch elastic solid: comparison of different theories using finite element method", Can. J. Phys., 92(10), 1269-1277. http://doi.org/10.1139/cjp2013-0482.
- Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, New York, NY, USA
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, New York, NY, USA.
- Saeed, T., Abbas, I.A. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), http://doi.org/10.3390/sym12030488.
- Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii "Ovidius" Constanta-Seria Mathematica, 22(2), 151-175. http://doi.org/10.2478/auom-2014-0040.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
- Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. http://doi.org/10.12989/sem.2008.28.1.019.
- Tahir, S.I., Chikh, A., Tounsi, A., AL-Osta, M.A., Al-Dulaijan, S.U. and Alzahrani, M.M. (2021b), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Tahir, S.I., Tounsi, A., Chikh, A., AL-Osta, M.A., Al-Dulaijan, S.U. and Alzahrani, M.M. (2021a), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Wave. Rand. Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
- Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidisc. Model. Mater. Struct., 14(1), 2-15. https://doi.org/10.1108/MMMS-04-2017-0022.
- Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. http://doi.org/10.1093/imamat/hxh101.
- Zakaria, M. (2012). "Effects of hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating", Int. J. Electromag. Appl., 2(3), 24-32. http://doi.org/10.5923/j.ijea.20120203.02.
- Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.
- Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.
- Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, M. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with Magnetic Zinc-Oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. http://doi.org/10.3390/e22101070.