DOI QR코드

DOI QR Code

Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala) ;
  • Himanshi, Himanshi (Department of Basic and Applied Sciences, Punjabi University Patiala)
  • Received : 2021.07.09
  • Accepted : 2021.11.26
  • Published : 2022.03.10

Abstract

The present research is to study the effect of inclined load in a two-dimensional homogeneous orthotropic magneto-thermoelastic solid without energy dissipation with fractional order heat transfer in generalized thermoelasticity with two-temperature. We obtain the solution to the problem with the help of Laplace and Fourier transformations. The field equations of displacement components, stress components and conductive temperature are computed in transformed domain. Further the results are computed in physical domain by using numerical inversion method. The effect of fractional order parameter and inclined load has been depicted on the resulting quantities with the help of graphs.

Keywords

References

  1. Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. http://doi.org/10.1134/S102995991802008X.
  2. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. http://doi.org/10.1007/s00419-008-0259-9.
  3. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. http://doi.org/10.12989/cac.2020.26.2.185.
  4. Alzahrani, F.S. and Abbas, I.A. (2020), "Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model", Math., 8(585), 1-11. http://doi.org/10.3390/math8040585.
  5. Bakoura, A., Bourada, F., Bousahla, A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83. http://doi.org/10/12989/cac.2021.27.1.073. https://doi.org/10.12989/CAC.2021.27.1.073
  6. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2021), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://doi.org/10/12989/cac.2021.26.5.439. https://doi.org/10.12989/cac.2020.26.5.439
  7. Bhatti, M.M., Marin, M., Zeeshan, A. and Abdelsalam, S.I. (2020), "Recent trends in computational fluid dynamics", Front. Phys., 8(4), http://doi.org/10.3389/fphy.2020.593111.
  8. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017a), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromag. Wave. Appl., 31(9), 879-897. http://doi.org/10.1080/09205071.2017.1326851.
  9. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017b), "Rayleigh surface wave propagation in orthotropic thermoelastic solid under three phase lag model", J. Therm. Stress., 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971.
  10. Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Roy. Astron. Soc., 13, 529-539 https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  11. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 614-627. https://doi.org/10.1007/BF01594969.
  12. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278.
  13. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 20(1), 107-112. https://doi.org/10.1007/BF01591120.
  14. Das, B. and Lahiri, A. (2015), "Generalized Magneto-thermoelasticity for isotropic media", J. Therm. Stress., 38(2), 210-228. http://doi.org/10.1080/01495739.2014.985564.
  15. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 051-64. http://doi.org/10.12989/scs.2021.39.1.051.
  16. Honig, G. and Hirdes, U. (1984), "A method for numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. http://doi.org/10.1016/0377-0427 (84)90075-x.
  17. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on winkler-pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. http://doi.org/10.12989/sem.2019.7.1.055.
  18. Kaur, I. and Lata, P. (2019), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(1), 1-13. http://doi.org/10.1186/s40712-019-0107-4.
  19. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
  20. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current in a transversely isotropic magneto-thermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. http://doi.org/10.12989/sem.2016.57.091.
  21. Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of hall current and two temperature transversely isotropic magneto-thermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. http://doi.org/10.1080/15376494.2016.1196769.
  22. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017b), "Rayleigh waves in anisotropic magneto thermoelastic medium", Couple. Syst. Mech., 6(3), 317-333. http://doi.org/10.12989/csm.2017.6.3.317.
  23. Lata, P. and Himanshi. (2021a), "Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current", Couple. Syst. Mech., 10(2), 103-121. http://doi.org/10.12989/csm.2021.10.2.103.
  24. Lata, P. and Himanshi. (2021b), "Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain", Struct. Eng. Mech., 77(3), 315-327. http://doi.org/10.12289/sem.2021.77.3.315.
  25. Lata, P. and Himanshi. (2021c), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. http://doi.org/10.12989/cme.2021.3.1.057.
  26. Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12289/sem.2019.70.2.245.
  27. Lata, P. and Zakhmi, H. (2020), Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity", Struct. Eng. Mech., 73(6), 725-735. http://doi.org/10.12289/sem.2020.73.6.725.
  28. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abs. Appl. Anal., 2013, Article ID 583464. http://doi.org/10.1155/2013/583464.
  29. Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660. http://doi.org/10.1080/16583655.2020.1763664.
  30. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. http://doi.org/10.1063/1.4914912.
  31. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., ... & Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://doi.org/10.12989/scs.2021.39.5.631.
  32. Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives: Theory and applications, Willey.
  33. Mudhaffar, M.I., Tounsi, A., Chikh, A., AL-Osta, M.A., Alzahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.09.
  34. Othman, M.I.A. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermomicrostretch elastic solid: comparison of different theories using finite element method", Can. J. Phys., 92(10), 1269-1277. http://doi.org/10.1139/cjp2013-0482.
  35. Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, New York, NY, USA
  36. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, New York, NY, USA.
  37. Saeed, T., Abbas, I.A. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), http://doi.org/10.3390/sym12030488.
  38. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii "Ovidius" Constanta-Seria Mathematica, 22(2), 151-175. http://doi.org/10.2478/auom-2014-0040.
  39. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
  40. Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. http://doi.org/10.12989/sem.2008.28.1.019.
  41. Tahir, S.I., Chikh, A., Tounsi, A., AL-Osta, M.A., Al-Dulaijan, S.U. and Alzahrani, M.M. (2021b), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  42. Tahir, S.I., Tounsi, A., Chikh, A., AL-Osta, M.A., Al-Dulaijan, S.U. and Alzahrani, M.M. (2021a), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Wave. Rand. Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
  43. Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidisc. Model. Mater. Struct., 14(1), 2-15. https://doi.org/10.1108/MMMS-04-2017-0022.
  44. Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. http://doi.org/10.1093/imamat/hxh101.
  45. Zakaria, M. (2012). "Effects of hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating", Int. J. Electromag. Appl., 2(3), 24-32. http://doi.org/10.5923/j.ijea.20120203.02.
  46. Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.
  47. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.
  48. Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, M. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with Magnetic Zinc-Oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. http://doi.org/10.3390/e22101070.