• Title/Summary/Keyword: orbital ephemeris

Search Result 27, Processing Time 0.026 seconds

TWO-COLOR VR CCD PHOTOMETRY OF OLD NOVA V603 AQUILAE

  • Andronov Ivan L.;Ostrova Nataliya I.;Kim, Yong-Gi;Burwitz V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.211-222
    • /
    • 2005
  • Results of 6 nights of CCD VR photometry of the nova-like variable V603 Aquilae (Nova Aquilae 1918) obtained at the Mallorcian 35-cm telescope in July 2004 are reported. The ephemeris for the superhump maximum is Max.HJD=2453213.60546(96)+0.14813(10)E. The waves with $3.^d9,\;1.^d4,\;0.^d135$ are statistically significant, which may be interpreted as the negative superhump-orbital, the beat periods (negative superhump- positive superhump) and the negative superhump with low amplitude, respectively. Another possible time-scale is $0.^d8,$ which has no coincidence with the beat periods. Quasi-periodic oscillations with an effective period of 18 minutes have been detected, which are close to 15.6 minutes reported by some authors. Their effective semi-amplitudes are $^m.045\;and\;0^m.051$ for V and R, respectively. This corresponds to the 0.12 mag excess in the color index V-R as compared with the mean color, which can be understood as the pulsed emission in the hotter inner parts of the accretion disk, similar to that observed in TT Ari and MV Lyr.

TWO-COLOR CCD PHOTOMETRY OF THE INTERMEDIATE POLAR 1RXS J180340.0+401214

  • Andronov, Ivan L.;Kim, Yong-Gi;Yoon, Joh-Na;Breus, Vitalii V.;Smecker-Hane, Tammy A.;Chinarova, Lidia L.;Han, Won-Yong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.3
    • /
    • pp.89-96
    • /
    • 2011
  • We present results of two-color VR photometry of the intermediate polar RXS J1803. The data were aquired using the Korean 1-m telescope located at Mt. Lemmon, USA. Different "high" and "low" luminosity states, similar to other intermediate polars, were discovered. No statistically significant variability of the color index with varying luminosity was detected. The orbital variability was found to be not statistically significant. Spin maxima timings were determined, as well as the photometric ephemeris for the time interval of our observations. The spin period variations, caused by interaction of the accretion structure with the rotating magnetic white dwarf, were also detected. These variations are of complicated character, and their study requires further observations. We determine the color transformation coefficients for our photometric systems, and improve on the secondary photometric standards.

TWO-COLOR CCD PHOTOMETRY OF THE INTERMEDIATE POLAR 1RXS J180340.0+401214

  • Kim, Yong-Gi;Yoon, Joh-Na;Andronov, Ivan L.;Breus, Vitalii V.;Smecker-Hane, Tammy A.;Chinarova, Lidia L.;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.145.1-145.1
    • /
    • 2011
  • We present results of two-color VR photometry of the intermediate polar RXS J1803. The data were aquired using the Korean 1-m telescope located at Mt. Lemmon, USA. Different "high" and "low" luminosity states, similar to other intermediate polars, were discovered. No statistically significant variability of the color index with varying luminosity was detected. The orbital variability was found to be not statistically significant. Spin maxima timings were determined, as well as the photometric ephemeris for the time interval of our observations. The spin period variations, caused by interaction of the accretion structure with the rotating magnetic white dwarf, were also detected. These variations are of complicated character, and their study requires further observations. We determine the color transformation coefficients for our photometric systems, and improve on the secondary photometric standards.

  • PDF

Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

  • Andronov, Ivan L.;Kim, Yonggi;Kim, Young-Hee;Yoon, Joh-Na;Chinarova, Lidia L.;Tkachenko, Mariia G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E. For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination $i=90^{\circ}$, $M_1=0.745M_{\odot}$, $M_2=0.854M_{\odot}$, $M=M_1+M_2=1.599M_{\odot}$, the orbital separation $a=1.65{\cdot}10^9m=2.37R_{\odot}$ and relative radii $r_1=R_1/a=0.314$ and $r_2=R_2/a=0.360$. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

REAL - TIME ORBIT DETERMINATION OF LOW EARTH ORBIT SATELLITES USING RADAR SYSTEM AND SGP4 MODEL (RADAR 시스템과 SGP4 모델을 이용한 저궤도 위성의 실시간 궤도결정)

  • 이재광;이성섭;윤재철;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(precision 0.bit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.