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We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 
= VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m 
telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the 
phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally 
distorted components, and an asymmetry of the maxima (the O’Connell effect). The periodogram analysis confirms the 
cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I.  
BJD = 2456074.4904 + 0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation 
of statistically optimal degree, and a recent method “NAV” (“New Algol Variable”) using local specific shapes for the eclipse. 
Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are 
presented. As results of our phenomenological model, we obtained for the inclination i=90°, M
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estimates may be used as preliminary starting values for further modeling using extended physical models based on the 
Wilson & Devinney (1971) code and it's extensions
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1. INTRODUCTION

Chungbuk National University Observatory (CBNUO) 

is monitoring many cataclysmic variables as a part of an 

“Inter-Longitude Astronomy (ILA)” campaign (Andronov 

et al. 2010) in order to study how the physical properties 

of  cataclysmic variables depend on time and luminosity 

state. CBNUO is also involved in developing an automatic 

observation system and an analysis program for monitoring 

the cataclysmic variables (Yoon et al. 2012, 2013). We have 

published some results from our monitoring data (Andronov 

et al. 2011; Kim et al. 2004, 2005). 1RXS J180340.0 + 401214 

is an intermediate polar, subclass of magnetic cataclysmic 

variables, which has a magnetic white dwarf accreting 

from its secondary. This object recently got an official 

name V1323 Her in the “General Catalogue of Variable 

Stars” (GCVS) (Samus et al. 2014). One eclipsing variable, 

2MASS J18024395 + 4003309, was discovered in the vicinity 

of this intermediate polar, 1RXS J1803, by Breus (2012). 

This object was registered in the “Variable Stars index” 

(VSX, http://aavso.org/vsx) and received the name VSX 

J180243.9 + 400331 (hereafter called VSX1802 for brevity) 
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and an object identifier 282837. Unfortunately, no GCVS 

name has yet been given to this object. The study of the 

main target V1323 Her was presented by Andronov et al. 

(2011).

Due to a relatively large angular distance (14’) from 

V1323 Her, VSX1802 is seen in the field of V1323 Her only 

in CCD images with a focal reducer. This was the case for 

one night reported by Andronov et al. (2012), who noted 

a sharp profile of the minimum. Additional observations 

from the Catalina survey (Drake et al. 2009) allowed them 

to determine photometric elements T
0
= 2456074.4904, 

P=0.3348837±0.0000002d. This profile is typical characteristic 

of systems with nearly equal radii and an inclination of 

i≈90° (i.e., both eclipses are nearly total). Due to incomplete 

coverage of the phases in the discovery paper by Andronov 

et al. (2012), more detailed study was needed for VSX1802. 

Such work can serve as one of the good by-products of the 

ILA campaign. 

The purpose of this study is to analyse the photometry 

data with a complete coverage of the phase as well 

as  to  car r y  out  phenomenological  modeling.  The 

phenomenological model is based on the theory of close 

binary systems e.g. presented in the classical monographs 

by Kopal (1959) and Tsessevich (1971). Because no detailed 

photometric or spectroscopic studies have been reported 

yet, our rough phenomenological model will help to study 

this object with more detail in the future.

2. OBSERVATIONS

The Korean 1-m telescope at Mt. Lemmon in Arizona, 

USA (LOAO), is equipped with a focal reducer for 2×2 K 

CCD. The field-of-view is 22.2 square arcminutes, which 

is very effective for studies not only of the main targets 

(typically intermediate polars), but also of other variable 

stars in the field. It should also be noted that another 

eclipsing binary GSC 04370-00206 (now called V442 Cam, 

Samus et al. 2014) has been discovered in the field of MU 

Cam = 1RXS J062518.2+733433  with this telescope (Kim et 

al. 2005).

In total, we obtained 196 observations in V (range 16.51m 

–17.51m) and 242 observations in R (range 15.88m–16.77m) 

between 2012 and 2014. The total duration of observations 

was 45.5 hours during 11 nights in R and 8 nights in the 

alternatively changing filters VR. The time interval of 

the observations was JD 2455998 – 2456722. To improve 

calibration accuracy, we have used the method of “artificial 

comparison star” (Andronov & Baklanov 2004; Kim et 

al. 2004). As the object is in the field of V1323 Her, we 

have used the star C1 of Andronov et al. (2011), for which 

Henden (2005) published the magnitudes of V and R filters:  

V =14.807m, Rc =14.436m. The original observations (HJD, 

magnitude) are available upon request. Fig. 1 is the finding 

chart of V1323 Her with VSX1802. 

3. PERIODOGRAM  ANALYSIS

For the periodogram analysis, we have used the trigonometric 

polynomial fit of a degree s:

        

𝜙𝜙 = 𝑡𝑡 − 𝑇𝑇0
𝑃𝑃 − int(𝑡𝑡 − 𝑇𝑇0
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� (1)

where coefficients Cα,α=1..m,m =1+2s are computed using 

the least squares method (cf. Anderson 2003; Andronov 

1994, 2003), and f is frequency (in cycles/day) . For fitting, 

we used the statistical test function  S( f ) as

	            

 

Fig. 1. Finding chart of V1323 Her (marked with v) and reference stars (marked by 
numbers). Reference star 22 is VSX 1802. The size of the field is 22’x22’. 

Periodogram  analysis 
 For the periodogram analysis, we have used the trigonometric polynomial fit 
of a degree s: 

𝑥𝑥𝐶𝐶(𝑡𝑡) = 𝐶𝐶1 + ∑ (𝐶𝐶2𝑗𝑗
. cos 2𝜋𝜋𝑓𝑓𝑓𝑓 + 𝐶𝐶2𝑗𝑗+1

. sin 2𝜋𝜋𝑓𝑓𝑓𝑓),𝑠𝑠
𝑗𝑗=1                 (1) 

where coefficients 𝐶𝐶𝛼𝛼, 𝛼𝛼 = 1. . 𝑚𝑚, 𝑚𝑚 = 1 + 2𝑠𝑠 are computed using the least squares 
method (cf. Anderson 2003; Andronov 1994, 2003), and f is frequency (in 
cycles/day) . For fitting, we used the statistical test function  𝑆𝑆(𝑓𝑓)  as 

𝑆𝑆(𝑓𝑓) =  𝜎𝜎𝐶𝐶
2

𝜎𝜎𝑂𝑂
2 = 1 − 𝜎𝜎𝑂𝑂−𝐶𝐶

2

𝜎𝜎𝑂𝑂
2 ,        (2) 

where 𝜎𝜎𝑂𝑂 is the r.m.s. deviation of the observations (O) from the sample mean, C 
corresponds to calculated values and O-C to the deviation of the observed values 
from the calculated ones. (see Andronov 1994, 2003 for more details). The 
periodograms are shown in Fig. 2 for the filter R and s=1 and s=2. One can see that 
the numerous peaks for  s=1 are much lower than those for s=2, indicating that the 
main signal corresponds not to the true frequency, but to its harmonic, which is 

� (2)

where σO is the r.m.s. deviation of the observations (O) 

from the sample mean, C corresponds to calculated values 

and O-C to the deviation of the observed values from the 

calculated ones (see Andronov 1994, 2003 for more details). 

The periodograms are shown in Fig. 2 for the filter R and 

s=1 and s=2. One can see that the numerous peaks for 

s=1 are much lower than those for s=2, indicating that the 

Fig. 1. Finding chart of V1323 Her (marked with v) and reference stars 
(marked by numbers). Reference star 22 is VSX 1802. The size of the field is 
22’x22’.
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main signal corresponds not to the true frequency, but to 

its harmonic, which is characteristic for eclipsing binaries 

with nearly equal minima (as was shown by Andronov et al. 

(2012) from the photometry from the Catalina survey). The 

most prominent peak at the periodogram corresponds to 

f =2.986107 cycles/day.  A close value of the best frequency, 

f = 2.986114 cycles/day is also seen for the observations in 

the filter V. The frequencies in the filter V and R are close 

within error estimates to the value f = 2.986111±0.000002 

cycles/day (Andronov et al. 2012), but differ by a value of 0.5/

year from the estimate based on 3 minima by Parimucha 

et al. (2012). Since our periodogram analysis confirms the 

cycle numbering of Andronov et al. (2012), for the initial 

approximation, we use their ephemeris:

	 Min I. BJD = 2456074.4904 + 0.3348837.E� (3)

4. PHENOMENOLOGICAL MODELING. MULTI – 
HARMONIC APPROXIMATION

The degree of the trigonometric polynomial s is often 

determined by visual comparison of the light curve with its 

approximation (cf. Parenago & Kukarkin 1936). To determine 

the statistically optimal degree s of approximation (1), 

one may use different criteria (see Andronov 1994, 2003 

for detailed discussion). The classical approach is to use 

Fischer’s criterion. In Fig. 2, the value L
s
= –lg FAP is plotted 

vs s. It is clearly seen that L is large for even values of s=2k, 

and L≈0 for s=2k+1; k=1, 2,..  This can be explained by the 

good symmetry of the light curve. Adopting the critical value 

L
crit

=3 (i.e. the false alarm probability FAP=10-3), one may 

suggest s=14 for the filter V and s=8 for R.  

Another criterion proposed by Andronov (1994) is based 

on the r.m.s. estimate of the accuracy of the smoothing curve 

σ[x
c
] at the moments of the observations. The corresponding 

dependence is shown in Fig. 3. For both filters, the minimum of 

σ[x
c
] corresponds to s=6. In this approximation, the frequency 

f is a free parameter determined using differential corrections. 

The best fit estimate of periods is P= 0.3348842d ±0.0000005d 

(V) , 0.3348845d ± 0.0000004d (R), the difference from the 

value in (1) is not statistically significant. The corresponding 

moments of the primary minima are 2456238.9186 ± 0.0005d 

(V), 24 56320.9663±0.0007d (R). The difference between these 

values is due to different cycle numbers close to the mean 

time of observations in V and R (as required for best accuracy 

estimates, see Andronov 1994 for details). 

The phase curves in the V and R filters for statistically 

optimal degrees of  trigonometric polynomial fit s = 6 

(best accuracy of the smoothing function) and s =14 

(Fischer’s criterion) are shown in Fig. 4.  Comparison of 

the trigonometric polynomial fits with different degrees 

s shows that, for smaller s, the depth of the eclipses is 

underestimated and there are formal waves at the “out-of-

eclipse” part. These waves are apparently present for larger s, 

where the accuracy of the smoothing function is larger, but 

the central part of the eclipses is approximated  better.

	

5. PHENOMENOLOGICAL MODELING. THE NAV 
ALGORITHM

Phenomenological modeling of the light curves of 

eclipsing binary stars with relatively narrow eclipses was 

described in detail by Andronov (2012). The method was 

called “NAV” (”New Algol Variable”) and applied to a few 

Algol-type variables (e.g. Kim et al. 2010b).

In short, the method may be described as follows. The 

smoothing function is defined as usual in the linear least 

squares method 						    
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2

� (4)

Fig. 2. Dependence of the parameter Ls= – lg FAP on the degree of the 
trigonometric polynomial s. The horizontal dashed line corresponds to a 
critical value L=3.
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where Cα are called “coefficients” and fα(t) - “basic functions”.  

Contrary to trigonometric polynomials with sines and cosines 

only,  the “New Algol Variable” (NAV) algorithm combines a 

low – order trigonometric polynomial with a special shape for 

the eclipses. Andronov (2012) and Tkachenko & Andronov 

(2014) compared a few approaches and chose a local shape 

dependent on a single parameter called β:		

	 𝐻𝐻(𝑧𝑧, 𝛽𝛽) = {(1 − |𝑧𝑧|𝛽𝛽)3/2, if   |𝑧𝑧| < 1
0                       else        (5) 

 

For =0, the shape is narrow and is physically unrealistic; for =1, the shape at the 
center of eclipse is triangular; for =2, it is parabolic and when 𝛽𝛽 approaches ∞, 
the shape tends to be  a rectangle. The dimensionless variable  z  is related to phase 
 as  

 𝑧𝑧 = (−0)−int(−0+0.5)


          (6) 

 

where phase is defined typically for a given initial epoch T0 and period P: 

  = (𝑡𝑡−𝑇𝑇0)−int(𝑡𝑡−𝑇𝑇0)
𝑃𝑃           (7) 

 

A discussion of the computation of phase for the case of variable period may 
be found in Andronov & Chinarova (2013). 

Another free parameter is the eclipse half-width =D/2, where D – the full 
width of the eclipse, in the GCVS (Samus et al. 2014) is expressed in percent of 
the period. 

Other shapes used for determining of the parameters are based on a Gaussian 
function and its modifications (Mikulasek et al. 2012), which are formally of 
infinite width. An opposite approach is a splitting of the phase interval and 
approximation of the “out-of-eclipse” parts by a constant and of the eclipses by a 
parabola (Papageorgiou et al. 2014) . The disadvantages of this model are: a) the 
discontinuity of the smoothing function, b) the underestimation of the depth of the 
minima because its width is set to a large constant and c) bad fitting of the 
ascending and descending branches. However, the number of parameters is only 5 
(as the width of the eclipse and the phase shifts are set to constants).  

 Our previous approach was to use 5 parameters for the “constant+parabola” 
fit (brightness out of eclipse, at the primary and secondary minimum; half-width 
 and shift 0), in order to avoid discontinuity of the smoothing function. Other 
types of functions were discussed by Andronov (2005) and Andronov & 
Marsakova (2006). 

� (5)
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𝜙𝜙 = 𝑡𝑡 − 𝑇𝑇0
𝑃𝑃 − int(𝑡𝑡 − 𝑇𝑇0

𝑃𝑃 )� (7)

A discussion of the computation of phase for the case 

of variable period may be found in Andronov & Chinarova 

(2013).

Another free parameter is the eclipse half-width Δϕ =D/2, 

where D – the full width of the eclipse, in the GCVS (Samus 

et al. 2014) is expressed in percent of the period.

Other shapes used for determining of the parameters 

are based on a Gaussian function and its modifications 

(Mikulasek et al. 2012), which are formally of infinite width. 

An opposite approach is a splitting of the phase interval and 

approximation of the “out-of-eclipse” parts by a constant 

and of the eclipses by a parabola (Papageorgiou et al. 2014). 

The disadvantages of this model are: a) the discontinuity 

of the smoothing function, b) the underestimation of the 

depth of the minima because its width is set to a large 

constant and c) bad fitting of the ascending and descending 

branches. However, the number of parameters is only 5 

(as the width of the eclipse and the phase shifts are set to 

constants). 

Our previous approach was to use 5 parameters for 

the “constant+parabola” fit (brightness out of eclipse, at 

the primary and secondary minimum; half-width Δϕ and 

shift ϕ0), in order to avoid discontinuity of the smoothing 

function. Other types of functions were discussed by 

Andronov (2005) and Andronov & Marsakova (2006).

In the NAV algorithm, the basic functions are: 

f
1
(1)=1

f
2
(ϕ)=cos(φ), φ=2πϕ

f
3
(ϕ)=cos(2φ)

f
4
(ϕ)=sin(φ)

f
5
(ϕ)=sin(2φ)

f
6
(ϕ)=H((ϕ-ϕ

0
)/C

8
, C

9
)

f
7
(ϕ)=H((ϕ-ϕ

0
-0.5 )/C

8
, C

10
)

The coefficient C
1
 corresponds to mean stellar magnitude 

after reducing the observations for the eclipse, effects of 

reflection, ellipticity and asymmetry. Although the effects 

of reflection, ellipticity and asymmetry are not strictly 

sinusoidal, their amplitudes are typically much smaller than 

Fig. 4. Phase curves in the V and R filters for statistically optimal degrees 
of the trigonometric polynomial fit s=6 (best accuracy of the smoothing 
function) and s=14 (Fischer’s criterion). Filled circles are original observations, 
the smoothing functions xc(φ) are shown with 1σ and 2σ error corridors. 
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those of the eclipses, thus, we use first-order approximation; 

C
2
 corresponds to semi-amplitude of the reflection effect; C

3
 

corresponds to the semi-amplitude of the ellipticity effect; 

the asymmetry (O'Connel effect, usually interpreted by 

spots) is approximated by terms with C
4
 and C

5
. The depths 

of the primary and secondary minimum are described by 

the coefficients C
6
 and C

7
, respectively.

To continue numeration of the coefficients, we introduce 

C
8
=Δϕ,  C

9
= β

1
 (describing the profile of the primary 

minimum) and C
10

=β
2
  for the secondary minimum. The 

phase shift C
11

=ϕ
0
 may also be added to the set of unknown 

variables, but we have used a fixed value ϕ
0
= 0 for the 

analysis of the present star. Typically the period and the 

initial epoch determined from long-term observations from 

different authors are more accurate than those from the 

smaller set of observations used for the analysis.

For each set of trial values of C
8
, C

9
, C

10
, the first 7 

coefficients were computed using the method of least 

squares (Anderson  2003; Press et al 2007). For the rest of 

the coefficients, one may choose among various methods 

(Cherepashchuk 1993; Andronov & Tkachenko 2013a; 

Marquardt 1963). For our analysis, we used the method of 

minimizing the test function at a grid. 

Usually, the test function for one filter may be written in 

this way:

        

𝜙𝜙 = 𝑡𝑡 − 𝑇𝑇0
𝑃𝑃 − int(𝑡𝑡 − 𝑇𝑇0

𝑃𝑃 )

𝑥𝑥𝑐𝑐(𝑡𝑡) = 𝐶𝐶1 +∑(𝐶𝐶2𝑗𝑗 ∙
𝑠𝑠

𝑗𝑗=1
cos2𝜋𝜋𝑓𝑓𝑓𝑓 + 𝐶𝐶2𝑗𝑗+1 ∙ sin2𝜋𝜋𝜋𝜋𝜋𝜋)

𝑥𝑥𝑐𝑐(𝑡𝑡) = ∑𝐶𝐶𝛼𝛼 ∙
𝑚𝑚

𝛼𝛼=1
𝑓𝑓𝛼𝛼(𝑡𝑡)

𝛷𝛷 = ∑𝑤𝑤𝑘𝑘

𝑛𝑛

𝑘𝑘=1
∙ (𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐(𝑡𝑡𝑘𝑘))

2
� (8)

where x
k
, t

k
 are signal values and times, respectively, and 

w
k
 are possible weight coefficients. The complete theory 

of statistical properties of the smoothing function in a case 

of arbitrary functions and (wavelet-like) time- and scale-

dependent weight functions was presented by Andronov 

(1997).

We have computed a dependence Φ
V
(C

8
)=minC8

,C9
Φ

V
(C

8
,C

9
,C

10
) 

for the filter V and, similarly, R. The minimum of Φ(C
8
)  are 

slightly different due to statistical errors. To get a single 

value, as theoretically expected, we made a scaled sum

	             

of  𝛷𝛷(𝐶𝐶8) are slightly different due to statistical errors. To get a single value, as 
theoretically expected, we made a scaled sum 

𝛷𝛷(𝐶𝐶8) =
𝛷𝛷𝑉𝑉(𝐶𝐶8)
𝛷𝛷𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝛷𝛷𝑅𝑅(𝐶𝐶8)
𝛷𝛷𝑅𝑅,𝑚𝑚𝑖𝑖𝑖𝑖

           (9) 

 

The adopted value of the filter half-width 𝐶𝐶8=0.1177, corresponds to the minimum 
of 𝛷𝛷(𝐶𝐶8).  Other parameters determined by the phenomenological modeling are 
listed in Table 1.  

Table 1. Coefficients of the phenomenological model for our observations in the 
filters V, R and that for Catalina (the latter published by Andronov et al. 2012).  

 
𝜶𝜶 
 

filter V filter R Catalina 

𝑪𝑪𝜶𝜶 𝝈𝝈𝜶𝜶 𝑪𝑪𝜶𝜶/𝝈𝝈𝜶𝜶 𝑪𝑪𝜶𝜶 𝝈𝝈𝜶𝜶 𝑪𝑪𝜶𝜶/𝝈𝝈𝜶𝜶 𝑪𝑪𝜶𝜶 

1 16.6742 0.0036 4592.10 16.1052   0.0047  3411.09 16.236 
2 0.0309 0.0052 5.92 0.0090 0.0068 1.33 - 
3 0.0921 0.0060 15.41   0.0815     0.0077  10.61 0.078 
4 -0.0100 0.0037 -2.73 0.0078 0.0047 1.68 - 
5 0.0158 0.0034 4.60 0.0204   0.0043   4.72 - 
6 0.6954 0.0224 31.04 0.6633   0.0327  20.29 0.568 
7 0.5457 0.0143 38.22 0.4947   0.0170  29.11 0.486 

 

The corresponding light curves for the filters V and R are shown in Fig. 5. 

� (9)

The adopted value of the filter half-width C
8
=0.1177, 

corresponds to the minimum of Φ(C
8
). Other parameters 

determined by the phenomenological modeling are listed in 

Table 1. 

The corresponding light curves for the filters V and R are 

shown in Fig. 5.

Using the smoothing functions for the two filters, the 

smoothing function of the color index V-R was computed. It 

is shown in Fig. 6.

6. DISCUSSION

From these coefficients of the “NAV” approximation, the 

classical phenomenological parameters listed in the GCVS 

(Samus et al. 2014) were determined: Max I=16.567m±0.006m, 

M a x I I = 1 6 . 5 9 2 m ± 0 . 0 0 6 m,  M i n I = 1 7 . 4 9 3 m ± 0 . 0 1 4 m, 

Table 1.	 Coefficients of the phenomenological model for our observations 
in the filters V, R and that for Catalina (the latter published by Andronov et al. 
2012). 
α filter V filter R Catalina

Cα σα Cα /σα Cα σα Cα /σα Cα

1 16.6742 0.0036 4592.10 16.1052  0.0047 3411.09 16.236
2 0.0309 0.0052 5.92 0.0090 0.0068 1.33 -
3 0.0921 0.0060 15.41   0.0815    0.0077 10.61 0.078
4 -0.0100 0.0037 -2.73 0.0078 0.0047 1.68 -
5 0.0158 0.0034 4.60 0.0204  0.0043  4.72 -
6 0.6954 0.0224 31.04 0.6633  0.0327 20.29 0.568
7 0.5457 0.0143 38.22 0.4947  0.0170 29.11 0.486

Fig. 5. The “NAV” fit for the phase curve and a corresponding “1σ” corridor, 
for the filters V (up) and R (bottom). At the phases of eclipses, an additional 
curve corresponding to a continuation of the “out of eclipse” parts is also 
shown.
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Min II = 17.281m ± 0.008m, Min I-Max I = 0.926m, Min II-

Max I=0.714m (filter V).  The corresponding point at the “depth 

– depth” diagram (Fig.1 in Malkov et al. 2007) lies close to 

the line “R” of equal radii, but slightly outside the allowed 

region. This is caused by the “simplified” model of spherical 

components without effects of ellipticity, reflection and limb 

darkening, which Malkov et al. (2007) have used. 

The parameters C
6
, and C

7
 correspond to the "reduced 

depth" of the minimum, i.e., not to the maximum (as in the 

"General Catalogue of the Variable Stars"),  with respect to 

the continuation of the "out-of-eclipse" curve, as shown 

in Fig. 4. If one uses them as “depths” of the minima, the 

corresponding point at the diagram by Malkov et al. (2007) 

is located in the physically reliable region, relatively close to 

the line of the equal radii. 

The mean color index, (V-R)=16.674m-16.105m = 0.569m  

± 0.069m was computed from the values of C
1
 for two filters. 

In the phase curve of the color index (Fig. 5), variations 

from 0.54m ± 0.01m (at Max I at phase 0.25) to 0.63m ± 0.03m 

(at Min I at phase 0.00) are present. At Min II at phase 0.50, 

V-R = 0.61m ± 0.01m. The asymmetry of the maxima indicates 

the presence of the O’Connell effect. 

These values of the color index are in the instrumental 

s y s t e m,  s o,  b e f o re  t a k i n g  i nt o  a c c o u nt  t h e  c o l o r 

transformation coefficients and determining (V-R) in the 

standard system, we can't estimate more precisely the "color 

temperature" of the "star1+star2 system" (i.e. weighted 

mean temperature of two components) and corresponding 

"spectral class" (also intermediate between that of the 

components).

Following Andronov (2012), we introduce residual 

relative intensities 

	     

Fig. 4. If one uses them as “depths” of the minima, the corresponding point at the 
diagram by Malkov et al. (2007) is located in the physically reliable region, 
relatively close to the line of the equal radii.  

The mean color index, (V-R)=16.674m-16.105m=0.569m ± 0.069 m
 was 

computed from the values of C1 for two filters. In the phase curve of the color 
index (Fig. 5), variations from 0.54m ± 0.01m (at Max I at phase 0.25) to 
0.63m±0.03m (at Min I at phase 0.00) are present. At Min II at phase 0.50, V-
R=0.61m±0.01m. The asymmetry of the maxima indicates the presence of the 
O’Connell effect.  

These values of the color index are in the instrumental system, so, before 
taking into account the color transformation coefficients and determining (V-R) in 
the standard system, we can't estimate more precisely the "color temperature" of 
the "star1+star2 system" (i.e. weighted mean temperature of two components) and 
corresponding "spectral class" (also intermediate between that of the components). 

Following Andronov (2012), we introduce residual relative intensities  

𝐼𝐼1 = 10−0.4𝐶𝐶6  (primary minimum)     (10) 

 

𝐼𝐼2 = 10−0.4𝐶𝐶7 (secondary minimum)     (11) 

 

The intensities are in units of sum of intensities of two stars (out of eclipse, 
but "reduced" for the three effects mentioned above) and the “intensity depth” of 
minimum (how much light is eclipsed): 𝑑𝑑1 = 1 − 𝐼𝐼1, 𝑑𝑑2 = 1 − 𝐼𝐼2. 

Andronov (2012) introduced a phenomenological parameter defined as  
𝑌𝑌 = 𝑑𝑑1 + 𝑑𝑑2.   The case 𝑌𝑌 = 0 corresponds to "no eclipse", 1 to "both eclipses are 
total", and, for the majority of cases, 0 ≤ 𝑌𝑌 ≤ 1. For this star, we get values of  

𝑌𝑌=0.868±0.014 (filter V),  𝑌𝑌=0.823±0.019 (R).     (12) 

 

In the model of "spherical stars with no limb darkening" (Shulberg 1971; 
Malkov et al. 2005) recently discussed by Andronov & Tkachenko (2013b) as a 
"zero-order" approximation for determination of physical parameters), the eclipsed 
part of the light is proportional to the surface of projection at the eclipse S; the 

(primary minimum)� (10)

	     

Fig. 4. If one uses them as “depths” of the minima, the corresponding point at the 
diagram by Malkov et al. (2007) is located in the physically reliable region, 
relatively close to the line of the equal radii.  

The mean color index, (V-R)=16.674m-16.105m=0.569m ± 0.069 m
 was 

computed from the values of C1 for two filters. In the phase curve of the color 
index (Fig. 5), variations from 0.54m ± 0.01m (at Max I at phase 0.25) to 
0.63m±0.03m (at Min I at phase 0.00) are present. At Min II at phase 0.50, V-
R=0.61m±0.01m. The asymmetry of the maxima indicates the presence of the 
O’Connell effect.  

These values of the color index are in the instrumental system, so, before 
taking into account the color transformation coefficients and determining (V-R) in 
the standard system, we can't estimate more precisely the "color temperature" of 
the "star1+star2 system" (i.e. weighted mean temperature of two components) and 
corresponding "spectral class" (also intermediate between that of the components). 

Following Andronov (2012), we introduce residual relative intensities  

𝐼𝐼1 = 10−0.4𝐶𝐶6  (primary minimum)     (10) 

 

𝐼𝐼2 = 10−0.4𝐶𝐶7 (secondary minimum)     (11) 

 

The intensities are in units of sum of intensities of two stars (out of eclipse, 
but "reduced" for the three effects mentioned above) and the “intensity depth” of 
minimum (how much light is eclipsed): 𝑑𝑑1 = 1 − 𝐼𝐼1, 𝑑𝑑2 = 1 − 𝐼𝐼2. 

Andronov (2012) introduced a phenomenological parameter defined as  
𝑌𝑌 = 𝑑𝑑1 + 𝑑𝑑2.   The case 𝑌𝑌 = 0 corresponds to "no eclipse", 1 to "both eclipses are 
total", and, for the majority of cases, 0 ≤ 𝑌𝑌 ≤ 1. For this star, we get values of  

𝑌𝑌=0.868±0.014 (filter V),  𝑌𝑌=0.823±0.019 (R).     (12) 

 

In the model of "spherical stars with no limb darkening" (Shulberg 1971; 
Malkov et al. 2005) recently discussed by Andronov & Tkachenko (2013b) as a 
"zero-order" approximation for determination of physical parameters), the eclipsed 
part of the light is proportional to the surface of projection at the eclipse S; the 

(secondary minimum)� (11)

The intensities are in units of sum of intensities of two 

stars (out of eclipse, but "reduced" for the three effects 

mentioned above) and the “intensity depth” of minimum 

(how much light is eclipsed): d
1
=1-I

1
, d

2
=1-I

2
. 

Andronov (2012) introduced a phenomenological 

parameter defined as Y = d
1
+ d

2
. The case Y = 0 corresponds 

to "no eclipse", 1 to "both eclipses are total", and, for the 

majority of cases, 0 ≤ Y ≤ 1. For this star, we get values of 

Y = 0.868 ± 0.014 (filter V), Y = 0.823 ± 0.019 (R)� (12)

In the model of "spherical stars with no limb darkening" 

(Shulberg 1971; Malkov et al. 2005) recently discussed 

by Andronov & Tkachenko (2013b) as a "zero-order" 

approximation for determination of physical parameters), 

the eclipsed part of the light is proportional to the surface of 

projection at the eclipse S; the surface of projection of stars 

S
1
= πr

1
2, S

2
= πr

2
2   Here, we use dimensionless parameters, 

r
1
=R

1
/a, r

2
=R

2
/a, where a is the orbital separation.

Let’s introduce L
1V

= 1-L
2V

 as the relative contribution of 

the emission from the first star in V, similar to other filters. 

Let’s define that the first star eclipses the second star at the 

primary (more deep) minimum. Under this definition, the 

second star has larger surface brightness (temperature).

So one may write a system of 4 equations

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

� (13)

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
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with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 
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i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 
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These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

� (14)

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

� (15)

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 
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However, we can estimate

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

� (17)

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

� (18)

Fig. 6. The smoothing curve for the color index using the “NAV” fits for the 
phase curve in the filters V and R and a corresponding “1σ” corridor. 
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From this, we can derive another combination

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 
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surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉

.𝑆𝑆     (13) 

𝑑𝑑2𝑉𝑉 = 𝐿𝐿1𝑉𝑉
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑉𝑉

.𝑆𝑆     (14) 

𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 

i.e., equal to unity within error estimates. A small difference 

(even if smaller error), could be related to limb darkening.

Other combinations are for the surface brightness

surface of projection of stars 𝑆𝑆1 = 𝜋𝜋𝑟𝑟1
2,  𝑆𝑆2 = 𝜋𝜋𝑟𝑟2

2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑉𝑉
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𝑑𝑑1𝑅𝑅 = (1 − 𝐿𝐿1𝑅𝑅).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑅𝑅
.𝑆𝑆/𝑆𝑆2 = 𝐹𝐹2𝑅𝑅

.𝑆𝑆     (15) 

𝑑𝑑2𝑅𝑅 = 𝐿𝐿1𝑅𝑅
.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 
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2. Here, we use dimensionless 
parameters, r1=R1/a, r2=R2/a, where a is the orbital separation. 

Let’s introduce 𝐿𝐿1𝑉𝑉 = 1 − 𝐿𝐿2𝑉𝑉  as the relative contribution of the emission 
from the first star in V, similar to other filters. Let’s define that the first star 
eclipses the second star at the primary (more deep) minimum. Under this definition, 
the second star has larger surface brightness (temperature). 

So one may write a system of 4 equations 

𝑑𝑑1𝑉𝑉 = (1 − 𝐿𝐿1𝑉𝑉).𝑆𝑆/𝑆𝑆2 =  𝐿𝐿2𝑉𝑉
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.𝑆𝑆/𝑆𝑆1 =  𝐹𝐹1𝑅𝑅

.𝑆𝑆     (16) 

with 5 unknowns, 𝐿𝐿1𝑉𝑉, 𝐿𝐿1𝑅𝑅, 𝑆𝑆, 𝑆𝑆1,  𝑆𝑆2 . Four parameters – the relative surface 
brightness 𝐹𝐹2𝑅𝑅 = 𝐿𝐿2𝑅𝑅/𝑆𝑆2 and similarly for the star 1 and filter V – are related to 
that mentioned above. So it is not possible to determine all 5 parameters without 
additional information (e.g. color index- luminosity (or absolute magnitude)-radius 
relation, assuming Main Sequence) - thus we need an "extra" equation.  

However, we can estimate 

𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑉𝑉/𝑑𝑑2𝑅𝑅 = 1.080 ± 0.037      (17) 

𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅 = 𝑑𝑑1𝑉𝑉/𝑑𝑑1𝑅𝑅 = 1.035 ± 0.046     (18) 

From this, we can derive another combination 

(𝑑𝑑1/𝑑𝑑2)𝑉𝑉/(𝑑𝑑1/𝑑𝑑2)𝑅𝑅 = (𝐿𝐿2𝑉𝑉/𝐿𝐿2𝑅𝑅)/(𝐿𝐿1𝑉𝑉/𝐿𝐿1𝑅𝑅) = 0.958 ± 0.053   (19) 

i.e. equal to unity within error estimates. A small difference (even if smaller error), 
could be related to limb darkening. 

Other combinations are for the surface brightness 

𝑑𝑑1𝑉𝑉/𝑑𝑑2𝑉𝑉 = 𝐹𝐹2𝑉𝑉/𝐹𝐹1𝑉𝑉 = 1.197 ± 0.037      (20) 

𝑑𝑑1𝑅𝑅/𝑑𝑑2𝑅𝑅 = 𝐹𝐹2𝑅𝑅/𝐹𝐹1𝑅𝑅 = 1.249 ± 0.057     (21) 

These phenomenological values may be used to estimate temperature ratios, 
e.g. using "Main Sequence" (MS) relations". From these MS assumptions, one may 
make a sequence of suggestions, which will be discussed below. 
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These phenomenological values may be used to estimate 

temperature ratios, e.g. using "Main Sequence" (MS) 

relations". From these MS assumptions, one may make a 

sequence of suggestions, which will be discussed below.

The second star (eclipsed at a primary minimum) has a 

larger surface brightness, consequently a larger radius and 

luminosity than the first star.

Taking into account Y≈1, one may suggest that the 

secondary eclipse is total (or close to total). Thus, S = S
1
, and 

the system of equations may be solved completely:

The second star (eclipsed at a primary minimum) has a larger surface 
brightness, consequently a larger radius and luminosity than the first star. 

Taking into account Y≈1, one may suggest that the secondary eclipse is total 
(or close to total). Thus, 𝑆𝑆 = 𝑆𝑆1 , and the system of equations may be solved 
completely: 

𝐿𝐿1𝑉𝑉 = 𝑑𝑑2𝑉𝑉 = 0.395 ± 0.008      (22) 

𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑅𝑅 = 0.366 ± 0.010     (23) 

(𝑆𝑆1/𝑆𝑆2)𝑉𝑉 = 𝑑𝑑1𝑉𝑉/(1 − 𝑑𝑑2𝑉𝑉) = 0.782 ± 0.021    (24) 

(𝑆𝑆1/𝑆𝑆2)𝑅𝑅 = 𝑑𝑑1𝑅𝑅/(1 − 𝑑𝑑2𝑅𝑅) = 0.721 ± 0.029    (25) 

These values slightly differ by a value of 0.061±0.035=1.7, and the 
difference is not statistically significant. The mean weighted value of the ratio of 
cross-sections of the two stars is (𝑆𝑆1/𝑆𝑆2) = 0.761 ± 0.017,  and the ratio of radii 
is (𝑅𝑅1/𝑅𝑅2) = 0.872 ± 0.010 (radius is in units of the orbital separation). For the 
low-mass part of the Main Sequence, R~M (e.g. Faulkner 1971) so this value may 
be an estimate of the mass ratio, 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 = 0.872 ± 0.010. From the table of 
Allen (1973) for the Main Sequence one may obtain a statistical relation R≈M0.72

 

for a wide range of spectral classes: from A0 to M0. In this case, we get a slightly 
different estimate 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1/𝑅𝑅2)1/0.72 = 0.826 ± 0.013 . From more 
recent tables of Cox (2000), R≈1.01M0.80, thus 

 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1𝑅𝑅2)
1

0.80 = 0.842 ± 0.012    (26) 

 However, the (unknown) deviations from the mass-radius relation may 
exceed this maximal 5 percent difference in estimates using different coefficients 
of the statistical dependence. From the duration of eclipse, one may suggest an 
inequality 

𝑟𝑟1 + 𝑟𝑟2 ≥ sin(2𝜋𝜋𝐶𝐶8) = 0.6739     (27) 

For such large values, the stars are distorted (and we see this also from large values 
of 𝐶𝐶3) and thus close to their Roche lobes. 

Although a possible W UMa – type classification may not be completely 
rejected, these stars are not yet in thermal contact (Lucy 1976) based on the 
difference of mean brightness and we suggest that they are not in contact. Thus, we 
prefer an EA – type classification with elliptic component(s). 

� (22)

The second star (eclipsed at a primary minimum) has a larger surface 
brightness, consequently a larger radius and luminosity than the first star. 

Taking into account Y≈1, one may suggest that the secondary eclipse is total 
(or close to total). Thus, 𝑆𝑆 = 𝑆𝑆1 , and the system of equations may be solved 
completely: 

𝐿𝐿1𝑉𝑉 = 𝑑𝑑2𝑉𝑉 = 0.395 ± 0.008      (22) 

𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑅𝑅 = 0.366 ± 0.010     (23) 

(𝑆𝑆1/𝑆𝑆2)𝑉𝑉 = 𝑑𝑑1𝑉𝑉/(1 − 𝑑𝑑2𝑉𝑉) = 0.782 ± 0.021    (24) 

(𝑆𝑆1/𝑆𝑆2)𝑅𝑅 = 𝑑𝑑1𝑅𝑅/(1 − 𝑑𝑑2𝑅𝑅) = 0.721 ± 0.029    (25) 

These values slightly differ by a value of 0.061±0.035=1.7, and the 
difference is not statistically significant. The mean weighted value of the ratio of 
cross-sections of the two stars is (𝑆𝑆1/𝑆𝑆2) = 0.761 ± 0.017,  and the ratio of radii 
is (𝑅𝑅1/𝑅𝑅2) = 0.872 ± 0.010 (radius is in units of the orbital separation). For the 
low-mass part of the Main Sequence, R~M (e.g. Faulkner 1971) so this value may 
be an estimate of the mass ratio, 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 = 0.872 ± 0.010. From the table of 
Allen (1973) for the Main Sequence one may obtain a statistical relation R≈M0.72

 

for a wide range of spectral classes: from A0 to M0. In this case, we get a slightly 
different estimate 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1/𝑅𝑅2)1/0.72 = 0.826 ± 0.013 . From more 
recent tables of Cox (2000), R≈1.01M0.80, thus 

 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1𝑅𝑅2)
1

0.80 = 0.842 ± 0.012    (26) 

 However, the (unknown) deviations from the mass-radius relation may 
exceed this maximal 5 percent difference in estimates using different coefficients 
of the statistical dependence. From the duration of eclipse, one may suggest an 
inequality 

𝑟𝑟1 + 𝑟𝑟2 ≥ sin(2𝜋𝜋𝐶𝐶8) = 0.6739     (27) 

For such large values, the stars are distorted (and we see this also from large values 
of 𝐶𝐶3) and thus close to their Roche lobes. 

Although a possible W UMa – type classification may not be completely 
rejected, these stars are not yet in thermal contact (Lucy 1976) based on the 
difference of mean brightness and we suggest that they are not in contact. Thus, we 
prefer an EA – type classification with elliptic component(s). 

� (23)

The second star (eclipsed at a primary minimum) has a larger surface 
brightness, consequently a larger radius and luminosity than the first star. 

Taking into account Y≈1, one may suggest that the secondary eclipse is total 
(or close to total). Thus, 𝑆𝑆 = 𝑆𝑆1 , and the system of equations may be solved 
completely: 

𝐿𝐿1𝑉𝑉 = 𝑑𝑑2𝑉𝑉 = 0.395 ± 0.008      (22) 

𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑅𝑅 = 0.366 ± 0.010     (23) 

(𝑆𝑆1/𝑆𝑆2)𝑉𝑉 = 𝑑𝑑1𝑉𝑉/(1 − 𝑑𝑑2𝑉𝑉) = 0.782 ± 0.021    (24) 

(𝑆𝑆1/𝑆𝑆2)𝑅𝑅 = 𝑑𝑑1𝑅𝑅/(1 − 𝑑𝑑2𝑅𝑅) = 0.721 ± 0.029    (25) 

These values slightly differ by a value of 0.061±0.035=1.7, and the 
difference is not statistically significant. The mean weighted value of the ratio of 
cross-sections of the two stars is (𝑆𝑆1/𝑆𝑆2) = 0.761 ± 0.017,  and the ratio of radii 
is (𝑅𝑅1/𝑅𝑅2) = 0.872 ± 0.010 (radius is in units of the orbital separation). For the 
low-mass part of the Main Sequence, R~M (e.g. Faulkner 1971) so this value may 
be an estimate of the mass ratio, 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 = 0.872 ± 0.010. From the table of 
Allen (1973) for the Main Sequence one may obtain a statistical relation R≈M0.72

 

for a wide range of spectral classes: from A0 to M0. In this case, we get a slightly 
different estimate 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1/𝑅𝑅2)1/0.72 = 0.826 ± 0.013 . From more 
recent tables of Cox (2000), R≈1.01M0.80, thus 

 𝑞𝑞 = 𝑀𝑀1/𝑀𝑀2 ≈ (𝑅𝑅1𝑅𝑅2)
1

0.80 = 0.842 ± 0.012    (26) 

 However, the (unknown) deviations from the mass-radius relation may 
exceed this maximal 5 percent difference in estimates using different coefficients 
of the statistical dependence. From the duration of eclipse, one may suggest an 
inequality 

𝑟𝑟1 + 𝑟𝑟2 ≥ sin(2𝜋𝜋𝐶𝐶8) = 0.6739     (27) 

For such large values, the stars are distorted (and we see this also from large values 
of 𝐶𝐶3) and thus close to their Roche lobes. 

Although a possible W UMa – type classification may not be completely 
rejected, these stars are not yet in thermal contact (Lucy 1976) based on the 
difference of mean brightness and we suggest that they are not in contact. Thus, we 
prefer an EA – type classification with elliptic component(s). 

� (24)

The second star (eclipsed at a primary minimum) has a larger surface 
brightness, consequently a larger radius and luminosity than the first star. 

Taking into account Y≈1, one may suggest that the secondary eclipse is total 
(or close to total). Thus, 𝑆𝑆 = 𝑆𝑆1 , and the system of equations may be solved 
completely: 

𝐿𝐿1𝑉𝑉 = 𝑑𝑑2𝑉𝑉 = 0.395 ± 0.008      (22) 

𝐿𝐿1𝑅𝑅 = 𝑑𝑑2𝑅𝑅 = 0.366 ± 0.010     (23) 

(𝑆𝑆1/𝑆𝑆2)𝑉𝑉 = 𝑑𝑑1𝑉𝑉/(1 − 𝑑𝑑2𝑉𝑉) = 0.782 ± 0.021    (24) 

(𝑆𝑆1/𝑆𝑆2)𝑅𝑅 = 𝑑𝑑1𝑅𝑅/(1 − 𝑑𝑑2𝑅𝑅) = 0.721 ± 0.029    (25) 

These values slightly differ by a value of 0.061±0.035=1.7, and the 
difference is not statistically significant. The mean weighted value of the ratio of 
cross-sections of the two stars is (𝑆𝑆1/𝑆𝑆2) = 0.761 ± 0.017,  and the ratio of radii 
is (𝑅𝑅1/𝑅𝑅2) = 0.872 ± 0.010 (radius is in units of the orbital separation). For the 
low-mass part of the Main Sequence, R~M (e.g. Faulkner 1971) so this value may 
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87.4o ≤  i  ≤ 90o, 0.999≤sin(i) ≤1, and for VSX 1802, the effects of inclination on 
estimates of radii and masses are negligible. 

Even though the spectral classes of this system have not been reported yet, 
we can suggest the corresponding spectral classes of these stars to be G8 and K2 
according to Cox (2000) and the possible Roche model of these VSX 1802 system 
can be estimated as in Fig. 7. 
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7. CONCLUSIONS

In this study, we estimated the parameters only from 

Fig. 7. The model of the system VSX 1802: The Roche lobes, the line 
of centers and circles corresponding to estimated radii of the stars in a 
spherically-symmetric approximation.
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phenomenological modeling of the phase light curve. The 

main unjustified suggestions were "no limb darkening" 

and "similar to MS dependencies" (no real quantitative 

relations, just "larger stars are brighter"). There are no 

detailed photometric or spectroscopic studies at present, 

therefore the true physical parameters of this system cannot 

be estimated for now.  

Our phenomenological modeling could allow rough 

estimates to make the physical parameters. Although the 

errors of the phenomenological parameters are not very 

large (up to few percent), there may be systematic errors up 

to a dozen percent due to the simplicity of the model. These 

estimates may be used as preliminary values for further 

modeling using extended physical models based on the 

Wilson & Devinney (1971) code and it’s extensions (Wilson 

1979, 1994, 2012, 2014; Zola et al. 1997, 2010; Bradstreet 

2005; Kallrath et al, 2009; Linnel 2012; Reed 2012; Rucinski 

2010; Prsa et al 2012). Such study of eclipsing binaries 

with the CBNU observations are reported by Jeong & Kim 

(2013); Kim & Jeong(2012); Jeong & Kim (2011) and Kim 

et al. (2010a).  It should be noted that the lack of spectral 

data doesn’t allow to study various combination of stars in 

different evolutionary stages. Some discussions with crude 

assumptions about the age and metallicity of the system 

are therefore out of the scope of this study. More detailed 

photometrical and spectroscopic information will enable 

more thorough studies. 
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