• Title/Summary/Keyword: orbital elements

Search Result 105, Processing Time 0.028 seconds

MEAN ORBITAL ELEMENTS FOR GEOSYNCHRONOUS ORBIT -II -Orbital inclination, longitude of ascending node, mean longitude- (정지위성 궤도의 평균 궤도 요소 - II -궤도 경사각, 승교점 경도, 위성 경도-)

  • 최규홍;박종옥;문인상;배성구
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.11-21
    • /
    • 1990
  • The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of $W_c,\;W_s$, and L are obtained.

  • PDF

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.

Mean Orbital Elements of a Near-Circular Orbiting Artificial Satellite due to the Earth's Zonal Potentials (지구 중력장에 기인한 원궤도에 가까운 인공위성의 평균 궤도요소)

  • 박필호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.111-122
    • /
    • 1988
  • The short and long periodic perturbations and secular perturbation due to the geopotentials of degree $J_2$ and $J_3$ which affect orbital elements of a near-circular orbiting satellite are obtained by the analytical method. The singular points due to a small denominator e in the perturbation equations can be excluded using one of the methods introduced by Taff(1985), which substitutes $e_s=esin\omega,\;e_c=ecos\omega\;and\;\ell=\omega+M$ for the orbital elements e, $\omega$ and M. We determined the mean orbital elements of the meteorological satellite NOAA-10 using the Walter (1967)'s iterative procedure and compared with Brouwer's mean orbital elements determined at NASA. The mean orbital elements a, ⅰand $\Omega$ are consistent with those of NASA but the mean orgital elements e, $\omega$ and M have some deviations from those of NASA. According to the our results, it is not suitable for the polar orbiting satellites to use the Taff's proposal for excluding the singular points, which substitutes e, $\omega$ and M by $e_s=esin(\Omega+\omega),\;e_c=ecos(\Omega+\omega)\;and\;L=\Omega+\omega+M$.

  • PDF

NORAD TLE CONVERSION FROM OSCULATING ORBITAL ELEMENT

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • The NORAD type Two Line Element (TLE) was obtained from the osculating orbital elements by an iterative approximation procedure. The mathematical model was presented and computer program was developed for the conversion. The osculating orbital elements of the KOMPSAT-1 were converted into the NORAD TLE. Then the effect of the SGP4 atmospheric drag coefficient ($B^*$) was analyzed by comparison of the orbit propagation results with different $B^*$ values.

An Orbital Design Method for Satellite Formation Flying

  • Cui Hai-Ying;Li Jun-Feng;Gao Yun-Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.177-184
    • /
    • 2006
  • An orbital design method of the formation initialization based on the relative orbital element method is presented. It firstly constructed the relative motion equation of the satellite formation flying in terms of the leader and followers' orbital elements. Then the equation was simplified when the orbit eccentricity of the leader satellite was small. And according to the satellites' mission, a general design method for the relative trajectory was proposed. The advantage of this method is that one can get a very simple analytical formula of each follower satellite's orbital elements when the orbital eccentricity of the leader satellite is zero. The simulation results show that the method is effective.

MEAN ORBITAL ELEMENTS FOR GEOSYNCHRONOUS ORBIT-I. -Semi-major, eccentricity, and longitude of perigee- (정지 위성 궤도의 평균 궤도 요소-I -궤도의 장반경, 이심률, 근지점 경도-)

  • 최규홍;이정숙;박종옥;문인상
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 1989
  • The mean orbital elements for geosynchronou8s satellite are developed in terms of non-singular orbital elements. The true satellite position oscillates about the position calculated from the mean elements due to short period perturbations to the satellite motion. The displacement of a geostationary satellite from this mean orbit position is less than 1800m. The mean elements of ec are obtained.

  • PDF

Photometric Orbital Analysis of an Eclipsing Binary System, RZ Draconis

  • Chou, Kyong-Chol
    • Journal of The Korean Astronomical Society
    • /
    • v.2 no.1
    • /
    • pp.10-22
    • /
    • 1969
  • Two-Color photoelectric observations were made at Flower and Cook Observatory, University of Pennsylvania. Since the spectroscopic elements are available for the system, derivation of an absolute physical dimension is now expected to be feasible. Results of computation of the orbital elements lead to a fact that the system shows an annular eclipse rather than a partial which is a finding reported by Shapley.

  • PDF

Observations of the Rigollet Comet from Korea and Japan

  • Lee, Ki-Won;Mihn, Byeong-Hee;Ahn, Young Sook;Kim, Bong-Gyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-66
    • /
    • 2014
  • Since Rigollet first discovered a comet in 1939, many follow-up observations have been made, particularly in Europe. It is now known that the Rigollet comet is identical with the one observed by Herschel in 1788, and thus it is now called 35P/1939 O1 or the Herschel-Rigollet comet. Yumi, a Japanese astronomer, also observed the Rigollet comet in Korea using a 6-inch refractor telescope, and published his data in two Japanese journals (Bulletin of the Observatory of the Government-General of Korea and Publication of the Lecture on Meteorology). In his paper, Yumi also referred to observations by Hirose and Kanda in Japan. However, their works have not been given attention by international society. In this study, we analyze the observation data of Yumi and present preliminary orbital elements using it with a modified Gauss method. We expect that this study will be used to refine the orbital elements of the Rigollet comet by orbital-calculation experts. For that reason, we have also transcribed all the observational data presented by Yumi.

Determination of KITSAT-3 Orbital Elements Using GPS Data from a Low-End Receiver (저급 GPS 수신기 데이터를 이용한 우리별 3호의 궤도 요소 결정)

  • Lee, Eun-Sung;Lee, Young-Jae;Jee, Gyu-In;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.123-129
    • /
    • 2002
  • This paper reveals determination of orbital elements of the satellite using GPS data collected by the low-end GPS receiver installed at KITSAT-3 which is a small scientific experimental satellite of Korea and launched in May 1999. An extended Kalman filter is designed for a forward estimation of real-time 3-dimensional position and velocity, and a smoother is used for a backward post-processing estimation of the same states. After finishing estimation of position and velocity, the corresponding orbital elements are estimated. Finally, the result of each orbital element is analyzed.

Orbital Elements Evolution Due to a Perturbing Body in an Inclined Elliptical Orbit

  • Rahoma, W.A
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.199-204
    • /
    • 2014
  • This paper intends to highlight the effect of the third-body in an inclined orbit on a spacecraft orbiting the primary mass. To achieve this goal, a new origin of coordinate is introduced in the primary and the X-axis toward the node of the spacecraft. The disturbing function is expanded up to the second order using Legendre polynomials. A double-averaged analytical model is exploited to produce the evolutions of mean orbital elements as smooth curves.