• Title/Summary/Keyword: oral drug delivery

Search Result 132, Processing Time 0.024 seconds

Preparation of Mucoadhesive Chitosan-Poly(Acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method II

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2005
  • A mucoadhesive microsphere was prepared by an interpolymer complexation and solvent evaporation method, using chitosan and poly(acrylic acid) (PAA), to prolong the gastric resid ence time of the delivery system. The Fourier transform infrared results showed that microspheres were formed by an electrostatic interaction between the carboxyl groups of the PAA and the amine groups of the chitosan. X-ray diffraction and differential scanning calorimetry analysis showed that the enrofloxacin in the chitosan-PAA microsphere was molecularly dispersed in an amorphous state. Scanning electron microscopy of the surface and the quantity of mucin attached to the microspheres indicated that chitosan-PAA microspheres had a higher affinity for mucin than those of chitosan alone. The swelling and dissolution of the chitosan-PAA microspheres were found to be dependent on the pH of the medium. The rate of enrofloxacin released from the chitosan-PAA microspheres was slower at higher pH; therefore, based on their mucoadhesive properties and morphology, the chitosan-PAA microspheres can be used as a mucoadhesive oral drug delivery system.

Establishment Percutaneous Administration Method in Beagle Dog

  • Han, Su-Cheol;Bae, Ju-Hyun;Cha, Shin-Woo;Jiang, Cheng-Zhe;Tarumoto Y.;Kim, Choong-Yong;Chung, Moon-Koo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.154-154
    • /
    • 2003
  • The primary routes of drug administration include oral, intramuscular, subcutaneous and intravenous dosing for toxicological risk assessment purpose in dog. There has been an increase applying transdermal patches as an alternate method for systemic delivery. The present study was performed to establish the transdermal delivery method of medicated ointment, liquid and powder material to beagle dog.(omitted)

  • PDF

Improved Dissolution Characteristics of Ibuprofen Employing Self-Microemulsifying Drug Delivery System and Their Bioavailability in Rats (자가유화 약물전달시스템을 이용한 이부프로펜의 용출개선 및 흰쥐에서의 생체이용률 평가)

  • Kim, Hyung-Soo;Lee, Sang-Kil;Choi, Sung-Up;Park, Hye-Sook;Jeon, Hyun-Joo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • A self-microemulsifying drug delivery system(SMEDDS) composed of Cremophor $EL^{\circledR},\;Labrasol^{circledR}$, and Lauroglycol $FCC^{circledR}$ was prepared for the enhancement of solubility, dissolution rate and bioavailability of ibuprofen(IBP), which is water-insoluble but soluble in oils and surfactants. Phase diagram with various regions including microemulsion area was depicted. The SMEDDS was encapsulated in soft gelatin capsules and their dissolution characteristics in various media were observed in comparison to the generic products commercially available in the market. Soft capsules of SMEDDS formulation showed better dissolution profiles, especially in acidic condition, than the others. For the period of 1 hr dissolution in pH 1.2 medium, it reached over 70% dissolution from soft capsules, compared to less than 40% dissolution from commercial reference tablets. On the other hand, in vivo pharmacokinetic parameters were obtained after oral administrations of different IBP preparations to Sprague Dawley rats. SMEDDS formulation showed higher $C_{max}$ and greater $AUC_{0-5hr}$ than the suspension of reference tablet or IBP powder. Therefore, it is possible to conclude that a newly developed soft capsules employing SMEDDS provides an alternative preparation to improve oral bioavailability of IBP.

Effects of Morin on the Bioavailability of Doxorubicin for Oral Delivery in Rats

  • Son, Hong-Mook;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • The purpose of this study was to investigate the effects of morin, an antioxidant, on the bioavailability of doxorubicin (DOX) in rats. Thus, DOX was administered intravenously (10 mg/kg) or orally (50 mg/kg) with or without oral morin (0.5, 3 and 10 mg/kg). In the presence of morin, the total area under the plasma concentration-time curve (AUC) of DOX was significantly greater than that of the control. In the presence of 3 and 10 mg/kg of morin, the peak concentration $C_{MAX}$) was significantly higher than that of the control. Consequently, the absolute bioavailability (AB) of DOX in the presence of morin was 3.7-8.3%, which was significantly enhanced compared with those of the control group (2.7%). The relative bioavailability (RB) of DOX was 1.36 to 3.02 times higher than those of the control group. Compared to the intravenous control, the presence of morin increased the AUC of DOX, but was not significantly affected. The enhanced bioavailability of oral DOX by oral morin may be due to the inhibition of both P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A in the intestine and/or liver by morin. This result may suggest that the development of oral DOX combination with morin is feasible, which is more convenient than the i.v. dosage forms. The present study raised the awareness about the potential drug interactions by concomitant use of DOX with morin.

ENHANCED BIOAVAILABILITY OF NIFEDIPINE USING COATED DRY ELIXIR

  • Park, Jae-Yoon;Kim, Chong-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.282-282
    • /
    • 1996
  • The purpose of this study was to prepare the nifedipine dry elixir (NDE) and coated nifedipine dry elixir (CNDE) containing nifedipine ethanol solution for improving the dissolution rate and bioavailability of nifedipine. NDE containing nifedipine and ethanol in wall materials of dextrin was prepared using a spray-dryer and then NDE was coated with eudragit acrylic resin to make CNDE. Shape and size of the NDE and CNDE were monitored by scanning electron micrograph and laser particle size analyzer In vitro dissolution tests were performed in simulated gastric and intestinal fluid. Bioavailability of NDE and CNDE were compared with drug powder suspension and commercial soft capsule after oral administration of the preparations to rats. NDE and CNDE are spherical in shape. Cross-sectional view of dry elixirs indicates the large inter cavity containing ethanolic drug solution in shell. Geometric mean diameter of NDE and CNDE is about 6.64 and 8.70 $\mu\textrm{m}$, respectively. Drug dissolution rate within first 5 min from NDE increased dramatically irrespective of dissolution medium. However, CNDE showed a particularly retarded dissolution rate in pH 1.2 simulated gastric fluid compared with NDE. The bioavailability of nifedipine in the NDE was increased dramatically compared with drug powder suspension. CNDE reduced initial burst-out plasma peak compared with NDE. CNDE as a sustained release delivery system could reduce the initial burst-out plasma peak due to controlling the release rate of nifedipine from NDE and maintain the effective plasma level over a longer period within therapeutic window with enhanced bioavailability of nifedipine.

  • PDF

The Intrathecal Drug Administration System (척수강 내 약물 주입술)

  • Nahm, Francis Sahngun;Kim, Yong Chul
    • The Korean Journal of Pain
    • /
    • v.22 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • The intrathecal drug administration system (ITDAS) has recently been introduced for treating chronic intractable pain patients who have failed with conservative pain treatments. The obvious advantages of its use are the direct intrathecal delivery of drugs, which yields reduced adverse effects and the increased strength of drugs, as compared to its oral or intravenous route. This article offers a review of the ITDAS with a brief review of its evidence-based effectiveness, the technical approach, and the complications.

Evaluation of Alginate Microspheres Prepared by Emulsion and Spray Method for Oral Vaccine Delivery System (유화법과 분무법에 의해 제조된 경구백신용 알긴산 마이크로스피어의 평가)

  • Jiang, Ge;Jee, Ung-Kil;Maeng, Pil-Jae;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.241-256
    • /
    • 2001
  • Alginate microspheres, containing fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) or green fluorescent protein (GFP) were prepared and used as a model drug to develop the oral vaccine delivery system. The alginate microspheres were coated with poly-L-lysine or chitosan. Two methods, w/o-emulsion and spray, were used to prepare alginate microspheres. To optimize preparation conditions, effects of several factors on the particle size and particle morphology of microsphere, and loading efficiency of model antigen were investigated. In both preparation methods, the particle size and the loading efficiency were enhanced when the concentration of sodium alginate increased. In the w/o-emulsion preparation method, as the concentration of Span 80 was increased from 0.5% to 2%, the particle size was decreased, but the loading efficiency was increased. The higher the emulsification speed was, the smaller the particle size and loading efficiency were. The concentration of calcium chloride did not show any effect on the particle size and loading efficiency. In the spray preparation method, the particle size was increased as the nozzle pressure $(from\;1\;kgf/m^2\;to\;3\;kgf/m^2)$ and spray rate was raised. Increasing calcium chloride concentration (<7%) decreased the particle size, in contrast to no effect of calcium chloride concentration on the w/o-emulsion preparation method. Alginate microspheres prepared by two methods were different in the particle size and loading efficiency, the particle size of microspheres prepared by the spray method was about $2-6\;{\mu}m$, larger than that prepared by the w/o emulsion method $(about\;2{\mu}m)$, and the loading efficiency was also higher with spray method. Furthermore, drying process for the microspheres prepared by the spray was simpler and easier, compared with the w/o emulsion preparation. Therefore, the spray method was chosen to prepare alginate microspheres for further experiments. Release pattern of FITC-BSA in alginate microspheres was evaluated in simulated intestinal fluid and PBS (phosphate buffered saline). Dissolution rate of FITC-BSA from alginate/chitosan microsphere was lower than that from alginate microsphere and alginate/poly-L-lysine microsphere. By confocal laser scanning microscope, it was revealed that alginate/FITC-poly-L-lysine microspheres were present in close apposition epithelium of the Peyer's patches of rabbits following inoculation into lumen of intestine, which proved that microspheres could be taken up by Peyer's patch. In conclusion, it is suggested that alginate microsphere prepared by spray method, showing a particle size of & $10\;{\mu}m$ and a high loading efficiency, can be used as a model drug for the development of oral vaccine delivery system.

  • PDF

Design of swelling gastroretentive drug delivery system for sustained release of metformin (메트포르민의 서방출을 위한 팽윤성 위체류 약물전달시스템 설계)

  • Weon, Kwon Yeon;Kim, Se Gie
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.215-222
    • /
    • 2020
  • Metformin is a recommended first-line therapy drug for type 2 diabetes patients. However, compared to other oral antidiabetic drugs (OAD), metformin has a large unit dosage, with bioavailability of 40-60%. This limiting bioavailability is because metformin is absorbed only in the upper gastrointestinal tract as a BCS class 3 drug. Hence, we propose that applying the Gastroretentive Drug Delivery System (GRDDS) and extending drug release time in the stomach will result in improved bioavailability. We selected the swelling type delivery system, as it is considered the most stable gastroretention technology compared to other GRDDSs. We modified the swelling excipient by using a natural swelling excipient to form a swelling tablet made of carrageenan and hydroxypropyl methylcellulose (HPMC). Our results indicate that the swelling complex tablet made of carrageenan and HPMC has a good swelling ability and shows required sustained release in a dissolution pattern. In addition, the carrageenan complex has a better swelling ability than the marketed metformin tablet, as determined by the ratio, (swelling ability)/(excipient weight). Taken together, our results indicate that the carrageenan complex can be developed as a good swelling excipient. Further optimizations are required for the commercialization of the carrageenan complex.

The Formulation and Dissolution Properties of Oral Sustained Release Sulindac Delivery System (설린닥의 경구용 지속성 제제설계 및 용출특성)

  • Rhee, Gye-Ju;Park, Sun-Hee;Suh, Sung-Su;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.48-59
    • /
    • 1997
  • Sustained release matrix tablets, pellets, and coated pellets for the delivery of sulindac were prepared using cellulose derivatives at various ratios, and evaluated for the dis solution pattern. The release of sulindac, from matrix tablets prepared with low viscosity HPMC was relatively fast, and especially the tablets made of Metolose SM released all of sulindac within 1 hr. The release of drug from tablets made of other HPMC derivatives were retarded in the order of the following: Pharmacoat 645>Pharmacoat 606>Pharrnacoat 606+HPC-L>HPC-L. The most sustained release pattern was observed with the preparation of high viscous polymer. Metolose 90 SH. While release of sulindac, from matrix type pellet containing 10mg/cap of Metolose 90 SH or 60 SH was completed within 1 hr, a prolonged release formulation (30% in 1 hr) was obtained by the inclusion of EC. Pellets coated with HPMC showed a fast release pattern (${\geq}$ 80% within 2 hrs), whereas pellets coated with HPMC and EC (molar ratio 1 : 1) showed a sustained release pattern (${\geq}$ 80% in 12 hrs), vath the release from EC pellets being the most sustained. Fast (naked) and slow release pellets coated with EC, Metolose 60SH 50cps and propylene glycol. and enteric pellets coated with HPMCP 55 and Myvacet$^{\circledR}$ were prepared, and combined at various ratios for the assessment of dissolution pattern. The result indicates the possibility that the development of 24 hr sustained release delivery systems containing sulindac for oral administration could be achieved by means of combining sustained and fast release pellets at a proper portion.

  • PDF

Transdermal Permeation of $[{^3}H]Acyclovir$ Using Niosome (니오솜을 이용한 $[^{3}H]$아시클로버의 경피투과)

  • Park, Sae-Hae;Lee, Soon-Young;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Niosomes are vesicles formed from synthetic non-ionic surfactants, offering an alternative to chemically unstable and expensive liposomes as a drug carrier. Non-ionic surfactant and cholesterol mixture film leads to the formation of vesicular system by hydration with sonication method. The formation of niosome was ascertained by negative staining of TEM. The entrapment efficiency of niosomal suspension was gradually increased with increasing the ratio of cholesterol to surfactant. It was found that the niosome with 6 : 4 (polyoxyethylene 2-cetyl ether: cholesterol) ratio was more stable than those with other ratios. The topical application of acyclovir(ACV) in the treatment of herpes simplex virus type 1(HSV-1) skin disease has a long history. There are an increasing number of reports, however, in which topical ACV therapy is not as effective as oral administration. Lack of efficacy with topical ACV has been hypothesized to reflect the inadequate delivery of drug to the skin. We investigated the permeation of niosome containing $[^{3}H]ACV$ in hairless mouse skin using Franz diffusion cell model. Permeation coefficient(P) of aqueous ACV was $6.7{\times}10^{-4}\;(cm/hr)$ and that of ACV in niosome was $23.4{\times}10^{-4}\;(cm/hr)$, suggesting about 3.5 times increase in the transdermal permeation.

  • PDF