• Title/Summary/Keyword: optimum yield

Search Result 1,956, Processing Time 0.029 seconds

A Study on Sampling Methods in Rice Yield Survey

  • Park, Hong-Nai
    • Journal of the Korean Statistical Society
    • /
    • v.4 no.1
    • /
    • pp.19-33
    • /
    • 1975
  • The Ministry of Agriculture and Fishery had carried out a random sample survey on rice yield by the method of plot cutting since 1959 to obtain correct statistics on rice production. There are important problems connected with the determination of optimum size and shape of sample plot, variation of yield between plots and field and variation in the time needed for different types of plot cutting. This kind of research has been performed in India by Dr. P. V. Sukhatme and Dr. V. G. Panse. Also the same optimum procedures are much different in Japan that in India. In Korea, the optimum procedures may well be different from either of these countries. Although the government is proceeding with the crop yield survey, it does not attempt to investigate plot problems but emphasize total rice yield estimation. This particular research was conducted on a scale enough that the author could personally supervise all of the work.

  • PDF

Optimal Synthesis Conditions of Calcium Hydrogen Phosphate (인산 일수소칼슘의 최적합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol;Kim, Jun-Hea
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • Calcium hydrogen phosphate was synthesized by reacting calcium chloride and sodium hydrogen phosphate solution in this study. It is well known that the particle size and yield o f calcium hydrogen phosphate produced is greatly affected by the synthetic conditions such as the reactant concentration, reaction temperature, reacting fine, mole ratio and drying temperature, etc. The purpose of this study is to investigate the optimum synthesis condition from the viewpoint of yield and sedimentation volume of the prepared calcium hydrogen phosphate powder according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. It was found that the optimum synthetic conditions of calcium hydrogen phosphate were as follows: It was found that optirnum temperature range of reactant solutions was $28-38^{\circ}C$ and $32-42^{\circ}C$ respectively, on the viewpoint of yield and sedimentation volume. The optimum concentration range of reactant solutions was 5.5-10.0% and 6.9-7.4% respectively, on the viewpoint of yield and sedimentation volume. The optimum mole ratio of $CaCl_2$ to $Na_2HPO_4$ was in the range of 1.2-2.0 and the optimum reacting time range was 8.5-11.0 minutes. The optimum drying temperature range was $39-41^{\circ}C$ from the viewpoint of yield, but it was $39-43^{\circ}C$ on the basis of sedimentation volume. Crystallographic analysis to X-ray diffraction patterns of commercially available ecalcium hydrogen phosphate and calcium hydrogen phosphate samples prepared in this study suggested that all samples tested belonged to monoclinic crystal system characteristic of $CaHP0_4{\cdot}2H_20$ crystals.

  • PDF

Determination of the Optimum Time of Harvest in Winter Rape (겨울 유채의 적정수확시기 결정에 관한 연구)

  • Chae, Y.A.;Kwon, Y.W.;Kwon, B.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.81-85
    • /
    • 1980
  • Field experiment was conducted to determine the optimum harvesting time in winter rape (Brassica napus L.) by investigating the percent oil, 1, 000 seed weight, seed yield, dehiscent pod ratio and oil yield at 46, 50, 54, 58, 62, 66 and 70 days after flowering. Variation of all characters with days after flowering could be explained significantly by second degree polynomial equations. Percent oil and 1, 000 seed weight increased until 62 days after flowering and thereafter these traits decreased, while seed yield increased to 58 days after flowering and thereafter this trait decreased. This controversy was due to the drastic increase in dehiscent pods beyond 58 days after flowering which brought loss in seed yield. These results suggest that optimum harvesting time is 58 days after flowering and it should not be later than 60 days after flowering.

  • PDF

Determination of Seeding and Harvesting Time in Snap Bean

  • Lee, Sang-Soon;Lee, Jeong-Dong;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.64-67
    • /
    • 2001
  • Snap bean is a new corp in Korea but believed to have a great deal of potentials for both domestic and overseas markets. The present study was performed to obtain the basic information about growth- and quality-related characteristics and to determinate the optimum seeding date and harvesting time for snap bean. Pod yield was significantly affected by seeding date. The highest pod yield was obtained from March 20 for determinate type and April 4 for indeterminate one, respectively, with the range of 13.0-23.7 t/ha. The pod length of indeterminate type was over 13cm, and the pod length was over 5 grams. The pod width for tested varieties was less than 1.0cm. Considering the pod growth characters such as pod length, pod width, and pod weight, the optimum harvesting time for immature pods of snap bean was supposed to be from 15 to 20 days after flowering. The daily yield of snap bean was begun to sharply increase from 15 days after the first flowering and the maximum yield was recorded at 30 days after flowering. For the accumulated yield, nearly 90% of total yield was obtained in 42 days after flowering.

  • PDF

Optimal Time Period for Using NDVI and LAI to Estimate Rice Yield

  • Yang, Chwen-Ming;Chen, Rong-Kuen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.10-12
    • /
    • 2003
  • This study was to monitor changes of leaf area index (LAI) and normalized difference vegetation index (NDVI), calculated from ground-based remotely sensed high resolution reflectance spectra, during rice (Oryza sativa L. cv. TNG 67) growth so as to determine their relationships and the optimum time period to use these parameters for yield prediction. Field experiments were conducted at the experimental farm of TARI to obtain various scales of grain yield and values of LAI and NDVI in the first and the second cropping seasons of 2001-2002. It was found that LAI and NDVI can be mutually estimated through an exponential relationship, and hence plant growth information and spectral remote sensing data become complementary counterparts through this linkage. Correlation between yield and LAI was best fitted to a nonlinear function since about 7 weeks after transplanting (WAT). The accumulated and the mean values of LAI from 15 days before heading (DBH) to 15 days after heading (DAH) were the optimum time period to predict rice yield for First Crops, while values calculated from 15 DBH to 10 DAH were the optimal timing for Second Crops.

  • PDF

Local Buckling and Optimum Width-Thickness Ratios of I-Beams in Fire (화재시 I-형강 보의 국부좌굴과 최적 폭-두께비)

  • Kang, Moon Myung;Yun, Young Mook;Kang, Sung Duk;Plank, R.J.
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.491-498
    • /
    • 2005
  • This study involves the development of a computer program to analyze the local buckling stresses for the flange and the web of I-beams under compression at elevated temperatures, and the optimization algorithm to analyze the optimum width-thickness ratios which does not occur their local buckling prior to yield failure. The high-temperature stress-strain relationships of steel used in this study were based on EC3 (Eurocode3) Part1.2 (2000b). In this study, the local buckling stresses and the optimum width-thichness ratios were analyzed considering the influences of the yield stress, local buckling coefficients and width-thickness ratios of the flange and the web. Design examples show the applicability of the computer program developed in this study.

Stand Density Effects on Herbage Yield and Forage Quality of Alfalfa

  • Min, D.H.;King, J.R.;Kim, D.A.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.929-934
    • /
    • 2000
  • Optimum stand density of alfalfa (Medicago sativa L.) varies with locations and climates. Stand density is one of the factors that determines herbage yield, forage quality and persistence of alfalfa. As establishment costs increase, the question arises whether present population densities are optimum for obtaining maximum herbage yield and forage quality. The objectives of this study were: 1) to determine the optimum plant density for highest herbage yield and forage quality for the dehydrated alfalfa industry under Edmontons climatic conditions in Alberta, Canada; 2) to compare herbage yield and forage quality of the cultivars 'Algonquin' and 'Vernal' grown at a range of stand densities. Alfalfa seedlings of both cultivars were either transplanted at spacings of 6, 10, 15 and 25 cm or direct seeded at the 4.5 cm plant spacings, providing population densities of 494, 278, 100, 45 and $16plants/m^2$. The experimental design was a randomized complete block with a split-plot arrangement having three replicates; the main plots consisted of two alfalfa cultivars Algonquin and Vernal, and the sub-plots were the five population densities. The cultivar Vernal had significantly higher annual yield than did the cultivar Algonquin. There was no significant effect of plant density on herbage yield. There was no difference in crude protein (CP) between the two cultivars. At the first cut, there was a significant quadratic effect of plant density on CP content and the greatest CP occurred at the 100 plants/m2 density. Crude protein was not affected by plant density at the second cut. Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by plant density. The cultivar Algonquin usually had a lower ADF and NDF than cultivar Vernal. In conclusion, high population densities ($278plants/m^2$ or more) of alfalfa did not improve herbage yield and forage quality compared with low plant population densities ($100plants/m^2$ or less) of alfalfa.

Influence of Sowing and Harvest Date on Yield and Nutritional Quality of Forage Rye

  • Kwon, Byung-Sun;Shin, Dong-Young
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.206-210
    • /
    • 2004
  • In order to find out the optimum harvest (dipping) date combined with sowing date on yield and nutrient quality of forage rye which is suitable at the Southern part of Korea, Paldanghomil variety was grown Sep. 2001 to May 2002 at Sunchon National University, and yield and nutrient quality of plant were observed. As harvest date and sowing date were delayed, the plant length was longest, number of leaves per plant was increased in the time of May 20 clipping. Fresh yield was the heaviest in the time of May 20 clipping and Oct. l0 sowing, and the most dry matter yield was the heaviest in the time of May 20 clipping and Oct. 10 sowing. Content of crude protein was the highest and that of crude fiber such as NDF, ADF, hemicellulose, cellulose and lignin were the lowest in the late time of clipping and sowing. Further more IVDMD was high and dry matter yield and digestible dry matter yield were the highest in the time of May 20 dipping and Oct. 10 sowing. Judging from the results reported above, at optimum harvest (dipping) date combined with sowing date for yield and nutrient quality of forage rye seemed to be the time of May 20 clipping and Oct. 10 sowing.

  • PDF

Dependence of Ozone Generation in a Micro Dielectric Barrier Discharge on Dielectric Material and Micro Gap Length

  • Sakoda, Tatsuya;Sung, Youl-Moon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.201-206
    • /
    • 2004
  • In order to investigate the optimum conditions for the effective ozone formation in a dielectric barrier discharge, measurements of ozone concentration were carried out for various conditions such as the gap length, the dielectric material and the operating gas. It was found that the optimum discharge conditions differed exceedingly in the types of operating gases and dielectric materials. In dry air, dielectric material with low dielectric constant and thermal conductivity, which might contribute to the restriction of the gas temperature rise in the discharge region, proved effective in obtaining both high ozone yield and concentration. The optimum gap length was considered to be in the range of 600-800 mm. In oxygen, using a quartz glass disk as a dielectric material, the required condition to obtain the high ozone yield and concentration was expanded.

Root Yields and Saikosaponin Contents Depending on Planting Time and Cultivated Regions of Bupleurum falcatum L.

  • Kim, Choon-Shik;Seong, Jae-Duck;Park, Chung-Heon;Park, Chun-Gun;Cho, Yang-Hee;Kwak, Jun-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.298-302
    • /
    • 2005
  • In order to decide the optimum planting time for Bupleurum falcatum L. which is grown widely in Korea, some experiments were carried out in different regions such as mid-north area (Gangwon-do, Gyeonggi-do and Chungcheongnamdo), mid-south area (Jeollanam-do, Jeollabuk-do, Gyeongsangnam-do and Gyeongsangbuk-do). The mid-south area had the highest total saikosaponin contents of 1.001, which is the medicinal ingredients of Bupleurum falcatum L., in accordance with the different Bupleurum falcatum L. regions. Also this area has the highest extract contents of 24.3%. Average dry root yields in mid-north area (Gangwon-do) were $450{\sim}460$ kg/ha at planting time of March 20th to March 30th, 500 kg/ha at the time of March 30th to April 10th, and $470{\sim}480$ kg/ha at the time of March 10th to March 20th in Chungcheongnam-do. The optimum planting time in the mid-south area (Jeollabuk-do) was March 10th to March 30th with the average dry root yield of $490{\sim}550$ kg/ha. Average dry root yield in Euiseong, Gyeongsangbuk-do area was 470 kg/ha, and the optimum planting time was April 10th, which suggested that the yield increased as the planting time was delayed. At Jeju-do, the volcanic soil of farsouthern area, average dry root yield was 510 kg/ha at the time of March 10th, but the yield from non-volcanic soil was lower than from volcanic soil, which had a dry root yield of 470 kg/ha.