• Title/Summary/Keyword: optimum storage time

Search Result 234, Processing Time 0.033 seconds

Determination of Harvesting Time and Effect of Diquat Treatment in Sesame Cropped After Winter Barley (맥류작 참깨의 수확기 결정과 건조제 처리의 효과)

  • Lee, H.J.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.64-67
    • /
    • 1980
  • Field experiments were conducted to determine the optimum harvesting time and to evaluate the effect of Diquat spray in late seeded sesame, cultivar 'Suweon 9'. Sesame seed yield reached a plateau from Sept. 18 harvest when seed number was maximum. Thousand seed wt. increased to Sept. 29 harvest. As harvesting was delayed moisture content of capsule decreased and capsule dehiscence increased. Capsule dehiscence did not start until its moisture content dropped below 70%. Optimum harvesting might begin from the time which moisture content of capsule dropped below 70%, leaf senescence reached upper node, and 50% of capsules lost green. About 5% increase in seed weight after defoliation was estimated to be translocation from capsule wall. Diquat spray with 0.3% and 0.5% (v/v) solution of commercial Reglone (20%in A.I.) decreased rapidly capsule moisture content and promoted seed shattering. Dehiscence in 90% capsules was noted at seven days after Diquat spray. Diquat spray as a harvest aid could accelerate sesame desiccation up to 2 wks from normal field condition.

  • PDF

An Optimum Harvest Time for Chinese Milk Vetch (Astragalus sinicus L.) Seed Production (자운영 종자생산을 위한 적정 수확시기 구명)

  • Lee, Byung-Jin;Choi, Zhin-Ryong;Kim, Sang-Yeol;Oh, Seong-Hwan;Kim, Jun-Hwan;Hwang, Woon-Ha;Ahn, Jong-Woong;Oh, Byeong-Geun;Ku, Yeon-Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • To determine an optimum harvest time for chinese milk vetch (CMV) seed production, the seeds were harvested at 4 times, according to 25, 30, 35, and 40 day after flowering (DAF), in Miryang, southern part of Korea. CMV plants were manually harvested at each time and seed threshing was done by rice threshing machine. Seed yield, 1,000-seed weight, germinability, and hard coat ratio were investigated. Seed yield was the highest, 53.9 kg/300 kg by dry weight (DW) of CMV plant, at 35 DAF. 1,000-seed weight increased according to seed harvest time from 25 DAF to 40 DAF when it was 3.10 g. The germination ratios of seeds harvested at 4 times were not significantly different when the seeds stored until August 1. In case of long period of CMV seeds stored, the seeds harvested later showed higher germination rate. On the other hand, because the hard coat ratio causing germination inhibition was declined with an increase of storage period, it was higher in the seeds harvested later. There was no difference among the seeds harvested at 4 times at October 1. In conclusion, it was presumed that an optimum harvest time for CMV seed production should be at 35 DAF considering seed yield, weight and germinability.

Growth characteristics and variation in component of sweet potato (Ipomoea batatas) cultivars according to cultivation period

  • Hwang, Eom-Ji;Nam, Sang-Sik;Lee, Joon-Seol;Lee, Hyeong-Un;Yang, Jung-Wook;Go, San;Paul, Naranyan Chandra
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.198-198
    • /
    • 2017
  • Cultivated varieties of sweet potato were from dry texture type to tender texture type on the basis of consumer preferences. There are many differences in the quantity of sweet potato, starch content, pigment, and sugar content depending on the cultivation season and area, even in the same variety. Therefore, in this study, we attempted to establish optimum time of harvesting through growth characteristics and variation in component like starch, sugar, polyphenol and flavonoid. Four sweet potato varieties were used in this experiment. Among them, Jinhongmi (JHM) & Yulmi (YM) were as dry texture type and Pungwonmi (PWM) & Hogammi (HGM) were as tender texture type. Sweet potatoes were transplanted on 23 May, 2016 and were investigated storage root weight and component contents every 20 days from 60 days to 120 days and surveyed yield at 110, 120, 130 days after transplantation. Result revealed that storage root weight of YM, JHM, and HGM were 30.1, 38.9, 20.8 g respectively in 60 days after transplanting. Storage roots of PWM gerw faster with the weight of 88.2 g. In 120 days after transplanting, storage root weight varied from 88.3 to 118.7 g, HGM was the smallest, and PWM was the largest. Sugar contents of sweet potato ranged from 21.0 to $23.8Brix^{\circ}$ in 60 days after transplanting and from 27.5 to $30.78Brix^{\circ}$ in 120 days after transplanting. In particular, the sugar content of HGM was the highest over $30Brix^{\circ}$ after 80 days. The starch content of dry texture type (YM, JHM) increased from 15.5% to 20.4% and tender texture type (PWM, HGM) increased from 11.0% to 17.3%. Starch content tended to be high in dry type sweet potatoes. The content of polyphenol and flavonoid were highest in 60 days after transplanting and was reduced according to cultivation period. The total yield of PWM was high as 3,154 kg/10a and large storage root of over 250 g accounted for 47.4% in 110 days after transplanting. Storage root (YM, JHM, HGM) of 81~150 g accounted for 34.9% ~ 43.2% in 120 days after transplanting. These are the most marketable. Because consumer in Korea prefers small, round and about 100g size sweet potato. The ratio of large storage root (over 250 g) were increased in all varieties at 130 days after transplanting. Therefore, it is considered appropriate to harvest PWM at 110 days and YM, JHM, HGM at 120 days after transplanting, which planted in late May.

  • PDF

Improvement of Heat Pump Heating Performance by Selective Heat Storage Using Air Heat of Inside and Outside Greenhouse (온실 내외부 공기열의 선택적 축열에 의한 히트펌프 난방성능 개선)

  • Kwon, Jin Kyung;Kim, Seung Hee;Jeon, Jong Gil;Kang, Youn Koo;Jang, Kab Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • In this study, the design and performance test of the air to water heat pump capable of producing hot water for greenhouse heating by using the surplus solar heat inside the greenhouse and the air heat outside greenhouse as the selective heat source were conducted. The heat storage operations using the surplus solar heat and the outside air heat were designed to be switched according to the setting temperature of the greenhouse in consideration of the optimum temperature range of the crop. In the developed system, it was possible to automatically control the switching of heat storage operation, heating and ventilation by setting 12 reference temperatures on the control panel. In the selective heat storage operation with the surplus solar heat and outside air heat, the temperature of thermal storage tank was controlled variably from $35^{\circ}C$ to $52^{\circ}C$ according to the heat storage rate and heating load. The heat storage operation times using the surplus solar heat and outside air heat were 23.1% and 30.7% of the experimental time respectively and the heat pump pause time was 46.2%. COP(coefficient of performance) of the heat pump of the heat storage operation using the surplus solar heat and outside air heat were 3.83 and 2.77 respectively and was 3.24 for whole selective heat storage operation. For the comparative experiment, the heat storage operation using the outside air heat only was performed under the condition that the temperature of the thermal storage tank was controlled constantly from 50 to $52^{\circ}C$, and COP was analyzed to be 2.33. As a result, it was confirmed that the COP of the heat storage operation using the surplus solar heat and outside air heat as selective heat source and the variable temperature control of the thermal storage tank was 39% higher than that of the general heat storage operation using the outside air heat only and the constant temperature control of the thermal storage tank.

Optimization of Cultivation and Storage Conditions on Red Cabbage Seed Sprouts (적양배추 새싹채소의 발아 및 저장 조건 최적화)

  • Baek, Kyeong-Hwan;Jo, Doekjo;Yoon, Sung-Ran;Kim, Gui-Ran;Park, Ju-Hwan;Lee, Gee-Dong;Kim, Jeong-Sook;Kim, Yuri;Han, Bumsoo;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • This study was carried out to find the optimal conditions for red cabbage seed sprouts in terms of their physicochemical and sensory qualities by electron-beam irradiation, cultivation and storage using the response surface methodology (RSM). Moisture content ($R^2$=0.9638) was affected by irradiation dose and cultivation time. Total phenolics content ($R^2$=0.9117) was mainly affected by irradiation dose, but carotenoid content ($R^2$=0.8338) was affected in the order of irradiation dose, cultivation time and storage time. Sensory properties were also affected by irradiation dose, and thus scores decreased as irradiation dose increased. The optimum conditions estimated by superimposing total phenolics content and overall acceptance were 2.2-3.8 kGy of the irradiation dose, 3.0-4.0 days of cultivation and 2.0-3.0 days of storage.

Physicochemical and sensory characteristics of Aster glehni Kimchi during storage at different fermentation temperatures (숙성온도를 달리한 섬쑥부쟁이 김치의 이화학적 및 관능적 특성)

  • 김은미;김건희
    • Korean journal of food and cookery science
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2004
  • This study was conducted to increase the value of Aster glehni as a useful food resource. The Hunter L, a and b Values of Aster glehni leaves Were 34.23${\pm}$2.80, -10.59${\pm}$1.80 and 13.29${\pm}$2.51, respectively. The Shearing force and contents of tannin and dietary fiber were 4701.2g, 100.9ppm and 37.1%, respectively. The minerals identified in Aster glehni were Ca (6.93mg/kg), K (45.36mg/kg), Mg (1.70mg/kg), Fe (0.36mg/kg) and Na (1.26mg/kg). Aster glehni Kimchi was packed in polyethylene film (200g) and fermented at 20 and 4$^{\circ}C$. With regards to the color changes, the Aster glehni Kimchi fermented at 20$^{\circ}C$ showed greater increases in the Hunter L, a and b values than a 4$^{\circ}C$. The pH of the Kimchi decreased and acidity increased with storage time at both temperatures. The ascorbic acid contents decreased sharply with storage time and by about 85% at 20$^{\circ}C$ after 5 days, and 73% at 4$^{\circ}C$ after 30 days. The reducing sugar content also decreased with storage time at both 20 and 4$^{\circ}C$. The results of the sensory evaluation showed the optimum ripening times of the Aster glehni Kimchi to be 1∼3 days at 20$^{\circ}C$ and less than 20 days at 4$^{\circ}C$.

Effect of Low Storage Temperature on Quality of Fresh Ginseng (저온저장 온도가 수삼의 품질에 미치는 영향)

  • Kim, Hee-Su;Kim, Gun-Hee;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • To investigate optimum temperature for storage of fresh ginseng (Panax ginseng C. A. Meyer), the quality of the ginseng was compared during its storage at $-3^{\circ}C$, $-1.5^{\circ}C$ and $0^{\circ}C$. The deterioration rate of fresh ginseng stored at $-3^{\circ}C$ was the lowest for 8 weeks after storage. The rate was rapidly increased after that time and the rate at $-3^{\circ}C$ was higher than that of fresh ginseng stored at $-1.5^{\circ}C$ or $0^{\circ}C$ after the 12th week of storage. The deterioration severity of the fresh ginseng stored at $0^{\circ}C$ was much higher than that of the ginseng stored at $-1.5^{\circ}C$ and $-3^{\circ}C$. The weight loss of fresh ginseng ranged from 0.7---- to 1.6---- after 16th week; it was the lowest in the ginseng stored at $-1.5^{\circ}C$ and similar in fresh ginseng stored at $0^{\circ}C$ and $-3^{\circ}C$. The number of viable cells and molds in the fresh ginseng stored at $-3^{\circ}C$ was smaller than the fresh ginseng that was stored at other temperatures for 12 weeks, but did not differ with different storage temperatures after the 14th week of storage. The surface color of the fresh ginseng at $0^{\circ}C$ or $-1.5^{\circ}C$ was changed little while the discoloration of fresh ginseng at $-3^{\circ}C$ was relatively great. The electrolytic leakage from the rhizome of the fresh ginseng stored at $-3^{\circ}C$ was higher than that of the rhizome stored at $-1.5^{\circ}C$ and $0^{\circ}C$. The overall sensory quality of the fresh ginseng dropped below 3.0 in the S-point scale after the 10th week of storage at $-3^{\circ}C$ and after the 14th week of storage at $-1.5^{\circ}C$ and $0^{\circ}C$ (p<0.05).

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Development of a Process for Clean-Washed Rice Processing (I) - Mass Balance Analysis - (씻지 않은 쌀의 가공 공정 개발 (I) - 질량수지 분석 -)

  • 장동일;한우석;김동철;이상효
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 1999
  • This study was conducted to decide several design criterion for clean-washed rice processing system development. A Computer simulation was used to predict and analyze the mass balances and moisture changes of the process of clean-washed rice processing system. The following results were obtained from this study. 1. In order to attain the processing capacity of 1,000kg/h of the clean-washed rice processing system, that of the system was designed as 1,400kg/h which was based on the safety factor of 40% and handling capability of mass variations occurred during processing. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 3. The final moisture content of clean-washed rice was controlled being 15%(w.b.) for the sake of safe storage. 4. It was proven that the optimum drying time was three minutes for the clean-washed rice dried by a rotary dryer.

  • PDF

Effect of Addition of Potato peel , Guar gum , Polydextrose on Quality of Backsulgies (감자 껍질 , Guar gum 및 Polydextrose 첨가에 의한 백설기의 품질특성 변화)

  • Choi, Young-Seon;Kim, Young-A
    • Korean journal of food and cookery science
    • /
    • v.8 no.3
    • /
    • pp.333-341
    • /
    • 1992
  • The physicochemical, rheological and sensory characteristics of 'BACKSULGIES', which was added with potato peel, guar gum or polydextrose, were investigated. The maximum acceptable addition ratio of dietary fiber to 'BACKSULGI' was 10%. And optimal addition ratio was 3% for all samples. The water binding capacity was affected by dietary fiber sources and incubation conditions (temperature and time). The Guar gum had me highest value of water binding capacity. The solubility was highly related with water binding capacity and me swelling power was increased with temperature increment. The degree of gelatinization was not significantly different with dietary fiber sources. But me values of gelatinization of 'BACKSULGIES' added with dietary fibers were significantly higher than mose of 'BACKSULGI' with no dietary fiber. Generally hardness and brittleness incresed along with storage time. But me hardness of 'BACKSULGIES' added with dietary fibers was significantly lower man those of 'BACKSULGI' with no dietary fiber. The retardation effect of dietary fibers for retrogradation of 'BACKSULGIES' was also proved by time constant determination of Avrami equation. Sernsory evaluation revealed that me addition of dietary fibers did not reduce the organoreptic quality. Therefore potato peel 3%, guar gum 3%, polydextrose 3% were optimum addition ratio which could be accepted as conventional 'BACKSULGI'. As me results of this study, it was proved mat the additions of dietary fibers to 'BACKSULGI' had the retardation effect of retrogradation.

  • PDF