• Title/Summary/Keyword: optimum mixture

Search Result 868, Processing Time 0.024 seconds

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • 박진식;안철우;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The result are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 39%(kudzu), 37%(sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/N ratio 25 indicated $68^{\circ}C$(kudzu), $70^{\circ}C$(sawdust). Optimum condition of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation gravitationally dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively. Major biological reaction in the aerobic fermentation feed production occurred during 12~24hrs.

  • PDF

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.

Optimization of Iced cookiess with the Addition of Pine leaf Powder (솔잎 가루 첨가 냉동 쿠키의 제조 배합비의 최적화)

  • Jin So-Yeon;Joo Na-Mi;Han Young-Sil
    • Korean journal of food and cookery science
    • /
    • v.22 no.2 s.92
    • /
    • pp.164-172
    • /
    • 2006
  • The purpose of this study was to find the optimal mixing condition of three different amounts of pine leaf powder, butter and sugar for preparation of pine leaf cookies. The optimum mixing condition for pine leaf cookies was optimized by response surface methodology The optimum mixing rates of pine leaf powder, butter and sugar were 8.6 g, 252.8 g and 154.1 g for color, 8.4 g, 240.7 g and 149.8 g for appearance, 8.8 g, 246.5 g and 154.7 g for flavor and 10.9 g, 277.1 g and 134.6 g for texture respectively. The optimum mixture ratio which fulfilled all items was pine leaf powder 9.4 g, butter 270.5 g and sugar 141 g.

Hydrogen Production and Organic Removal according to Mixture Ratio of Food Wastewater and Swine Wastewater using Anaerobic Batch Reactor (회분식 혐기성 소화 반응기에서 음식물탈리액과 양돈폐수의 혼합비에 따른 수소 생산 및 유기물 제거)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.641-647
    • /
    • 2007
  • This study aims to find out optimum condition for hydrogen production and organic removal when treating food and swine wastewater together. For this purpose, various batch tests were conducted by changing mixture ratio from 6:4 (food wastewater:swine wastewater) to 1:9 without pretreatment process. For hydrogen production through anaerobic fermentation, the mixture ratios of R-1 (6:4), R-2 (5:5) and R-6 (1:9) were out of pH range appropriate for hydrogen production and mixture ratios of R-3 (4:6), R-4 (3:7), and R-5(2:8) showed appropriate hydrogen production where their pH ranges were 5.1~5.5. Especially in case of R-3, it consistently maintained appropriate pH range for hydrogen production for 72hr and produced maximum hydrogen. The characteristics of hydrogen production and cumulative hydrogen production according to each mixture ratio showed that R-1, R-2 and R-6 did not produce any hydrogen, and maximum hydrogen productions of R-3, R-4 and R-5 were 593ml, 419ml and 90ml, respectively. Total cumulative hydrogen productions of R-3, R-4 and R-5 were 1690ml, 425ml and 96ml, respectively. Based on previous results, it was concluded that, the most appropriate mixture ratio of food wastewater and swine wastewate rwas 4:6 (R-3). The experiment for COD removal rate to evaluate organic removal efficiency revealed that R-3, R-4 and R-5 showed high removal efficiencies during the highest hydrogen production amount and the highest efficiency was 41% with R-3.

Optimal Mixture Ratio for Rice (Oryza sativa L.) Gruel Supplemented with Puffed Rice by Mixture Design (혼합물 실험 계획법에 의한 팽화미 첨가 쌀죽의 최적 배합비 분석)

  • Ku, Kyung-Hyung;Choi, Eun-Jeong;Koo, Min-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.2
    • /
    • pp.218-226
    • /
    • 2013
  • This study examined the optimal mixture ratio of rice gruel supplemented with puffed rice by mixture design. The quality characteristics of rice gruel samples were examined according to mixture ratios at eleven experimental points. The high soluble solid content and viscosity of gruel samples were significantly dependent on rice (short grain) content instead of glutinous rice. The viscosity ranged from $2,891{\sim}9,153\;cP{\cdot}s$ and soluble solid content ranged from $8.23{\sim}10.13^{\circ}Brix$ at the eleven experimental points. The mixture with the highest solid content and viscosity, 12% rice gruel sample was $10.10{\sim}10.13^{\circ}Brix$ and $9,150{\sim}9,153\;cP{\cdot}s$. The L color of sample decreased with decreasing rice content, while "a" (redness) and "b" (yellowness) values slightly increased. In the sensory evaluation, samples with higher amount of puffed rice and glutinous rice scored higher for brown color, flavor and sweetness than high-content rice samples. The response surface and trace plot results showed that increasing of puffed rice increased the brown color, sweet taste and sticky aftertaste. From the results of the F-test, viscosity, "a" (redness) and "b" (yellowness) values fit a quadratic model with significant probabilities within 0.05%. The optimum predicted formulations of rice gruel containing puffed rice were 1.69% of puffed rice, 0.47% of glutinous rice and 9.84% of rice, respectively.

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology

  • Khan, Asaduzzaman;Do, Jeongyun;Kim, Dookie
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.629-638
    • /
    • 2016
  • Optimization of the concrete mixture design is a process of search for a mixture for which the sum of the cost of the ingredients is the lowest, yet satisfying the required performance of concrete. In this study, a statistical model was carried out to model a cost effective optimal mix proportioning of high strength self-compacting concrete (HSSCC) using the Response Surface Methodology (RSM). The effect of five key mixture parameters such as water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content on the properties and performance of HSSCC like compressive strength, passing ability, segregation resistance and manufacturing cost were investigated. To demonstrate the responses of model in quadratic manner Central Composite Design (CCD) was chosen. The statistical model showed the adjusted correlation coefficient R2adj values were 92.55%, 93.49%, 92.33%, and 100% for each performance which establish the adequacy of the model. The optimum combination was determined to be $439.4kg/m^3$ cement content, 35.5% W/B ratio, 50.0% fine aggregate, $49.85kg/m^3$ fly ash, and $7.76kg/m^3$ superplasticizer within the interest region using desirability function. Finally, it is concluded that multiobjective optimization method based on desirability function of the proposed response model offers an efficient approach regarding the HSSCC mixture optimization.

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

Acid Pickling/polishing of AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • This article reports a new chemical bath for preparing a mirror-like surface of AZ31 Mg alloy. In order to find an appropriate chemical polishing solution, four different acidic solutions of sulphuric acid, nitric acid, acetic acid and a specially designed mixture of nitric acid and acetic acid were investigated in view of the changes in surface appearance, roughness and dissolution rate of AZ31 Mg alloy. The surface scales on AZ31 Mg alloy were readily removed by all the acidic solutions, but a reflective surface was produced only by etching in the specially designed solution, and only after a specific etching time. The surface roughness increased with etching time in sulphuric acid, nitric acid, and acetic acid, but it lowered after a specific etching time in the specially designed mixture of nitric acid and acetic acid. Dissolution rate of the alloy in the specially designed mixture of nitric acid and acetic acid appeared to be more than twice than that in separate nitric acid or acetic acid. In this work, we recommend the mirror-like surface of AZ31 Mg alloy obtained by polishing for an optimum time in a mixture of nitric acid and acetic acid for following surface finishings, chemical conversion coating, electroplating, electrophoretic painting and anodizing treatment.

Effect of External Factors on Diastase Activity in Water (각종 요인이 물속의 Diastase 활성에 미치는 영향)

  • Yoon, Bock-Sang;Hyun, Ho-Sup;Paik, Nam-Won
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 1974
  • Many factors exert an influence on enzyme activity and thus on the rate of reactions that they catalyse. The most important of these factors are pH, temperature, substrate concentration, and the concentration of some inhibitors present. A solution of the enzyme diastase, which breaks down molecules of the polysaccharide starch to the disaccharide maltose by hydrolysis, was provided. Activity of this enzyme was measured by the rate at which starch was removed from the reaction mixture. These experiments were designed to study this reaction rate under varying conditions and the following results were obtained. 1. The range of optimum pH for this enzyme at room temperature was 4.0-7.0 and the optimum pH was 5.0. 2. The range of optimum temperatures for this enzyme at pH 7.0 was $30^{\circ}C-50^{\circ}C$ and the optimum temperature was $40^{\circ}C$. 3. The relationship between the enzyme activity and substrate concentration could be expressed by the Michaelis-Menten equation. The limiting velocity of this enzyme at room temperature and pH 7.0 was $415{\mu}g$ starch removed/ml of reaction mixture/min and $K_m$, Michaelis constant, was $343{\mu}g/ml$. 4. Inhibitors NaCl and $HgCl_2$ blocked this enzyme activity completely at 1% and 0.01% respectively.

  • PDF