• Title/Summary/Keyword: optimum mixture

Search Result 868, Processing Time 0.026 seconds

Effects of Refrigerant and Oil Charges on the Performance of an Refrigeration System (냉동기유 주입량과 냉매 충진량에 따른 냉동기 성능 평가)

  • 선종관;채수남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.617-625
    • /
    • 2002
  • In this study, effects of refrigerant and oil charges on the performance of a refrigeration system simulating an automobile air conditioner have been experimentally investigated using R134a and PAG oil. Measurements were taken in a breadboard type refrigeration test unit with a compressor used for a commercial automobile air-conditioner under a set of condition imposed upon normally to automobile air conditioners. Both the COP and capacity decreased rapidly as the oil charge increased because of the decrease in vapor pressure of the circulating refrigerant/oil mixture. The excess oil left in the evaporator also caused heat transfer degradation resulting in a decrease in capacity and in turn COP. It was found that there is an optimum refrigerant charge at which the COP becomes the maximum. Below this optimum charge, both the capacity and COP increased as the refrigerant charge increased and above the optimum charge, both of them remained almost constant. Hence, the COP seems to be the most important factor in determining the optimum refrigerant charge. When the system was undercharged, the refrigerant at the condenser exit lost subcooling and showed a sign of poor miscibility.

Study on the Proper Emulsified-Asphalt Content for a Cold-Recycling Asphalt Mixture (상온 재활용 아스팔트 혼합물의 적정 유화아스팔트 함량 선정 연구)

  • Yang, Sung Lin;Son, Jung Tan;Lee, Kang Hun
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • PURPOSES : The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture's performance. METHODS : The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the $G*/sin{\delta}$and the dynamic shear modulus (${\mid}G*{\mid}$). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt. RESULTS : The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its $G*/sin{\delta}$ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa). CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.

Least Cost and Optimum Mixing Programming by Yulmu Mixture Noddle (율무국수를 이용한 최소가격/최적배합 프로그래밍)

  • Kim, Sang-Soo;Kim, Byung-Yong;Hahm, Young-Tae;Shin, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.385-390
    • /
    • 1999
  • Noodle was made using a combination of yulmu, wheat and water through mixture design. Statistical models of yulmu noodle were shown by analysing tensile stress and color $(L^{*})$, and sensory evaluation with other constraints. Analysing the linear and non-linear model, the linearity in the values of tensile stress, lightness $(L^{*})$ and sensory evaluation showed that each component worked separately without interactions. In studying the component effect on the response by trace plot, the result indicated that the increase in the amount of yulmu enhanced tensile stress of noodle while degrading $L^{*}$ value and sensory evaluation score. In the range of satisfying the conditions of noodle in every tensile stress, $L^{*}$ value and sensory evaluation point, the optimum mixture ratio of yulmu : wheat : water was 2.27% : 66.28% : 28.45% based on least cost linear programming. In this calculation, the least cost was 9.924 and estimated potential results of the response for tensile stress was 2.234 N and those for $L^{*}$ was 82.39. Finally, the potential response results affected by mixture ratio of yulmu, wheat and water were screened using Excel.

  • PDF

A Study on the Hydraulic Properties of Domestic Clay/Crushed Rock Mixture for the Backfill Material in a Radioactive Waste Repository (방사성폐기물 처분장 되메움재를 위한 국산점토/분쇄암석 혼합물의 수리특성에 관한 연구)

  • Lee, J.O.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • The hydraulic properties of domestic natural clay/crushed rock mixture suggested as a candidate backfill material for the low and intermediate level waste repository were investigated. The dry density-water content relationship was studied to define an optimum water content that gives a maximum attainable dry density at constant compaction pressure. The hydraulic conductivities of clay/crushed rock mixture as a function of clay content were also measured. As the clay content decreased, the maximum attainable dry density increased and the optimum water content became more distinct. However the attainable density is not significantly sensitive to water content. The hydraulic conductivities of the mixture increased from 5 $\times$ 10$^{-12}$ m/s to 7 $\times$ 10$^{-10}$ m/s with clay content decreasing from 100 wt.% to 25 wt.% at dry density of 1.2 Mg/㎥. In case of dry density of 1.5 Mg/㎥, they maintain the lower values of 5 $\times$ 10$^{-12}$ m/s even at 25 wt.% clay content. The concept of effective clay dry density was suggested to estimate the hydraulic conductivity of the mixture. It was shown that the effective clay dry density concept can explain welt the hydraulic conductivities of the mixtures with various dry density and crushed rock content.

  • PDF

Effect of Dietary Lipid Level and Herb Mixture on Growth of Parrot Fish, Oplegnathus fasciatus (사료 지질 및 한방제 첨가가 돌돔의 성장에 미치는 영향)

  • KIM Jong-Hyun;LEE Sang-Min;BAEK Jae-Min;CHO Jae-Kwon;KIM Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • A feeding trial was carried out to Investigate the effect of lipid level and herb mixture in the diets on growth of juvenile parrot fish, Oplegnathus fasciatus. Two plicate groups of fish averaging 4.5 g were fed four experimental diets containing herb mixture (0 and 5 g/kg diet) at each of two lipid levels $(8\%\;and\;16\%)$ for 8 months from summer to spring (water temperature, $7.2-25.4^{\circ}C)$. Weight gain improved with increasing dietary lipid level or supplementation of herb mixture during the first 4 months feeding period. Weight gain of fish fed the diet containing $16\%$ lipid level was significantly higher (P<0.05) than that of fish fed the diet containing $8\%$ lipid level. Weight gain of fish fed the diet with herb mixture was significantly higher (P<0.05) than that of fish fed the diet without herb at the $16\%$ lipid level. Feed efficiency was influenced by dietary lipid level or herb mixture during the first 4 months. On the other hand, weight gain and feed efficiency were not affected by dietary lipid level and herb mixture after 4 months until end of feeing period. Survival of fish fed the diet containing $8\%$ lipid without supplementation of herb mixture was the lowest among the groups (P<0.05). Lipid contents of liver and viscera tended to increase with increasing dietary lipid level during the first 4 months feeding period, however muscle lipid content was not influenced by dietary lipid and herb. Total cholesterol of serum was influenced by dietary lipid level during the first 4 months feeding period. These results indicate that an increase of dietary lipid level from $8\%\;to\;16\%$ and supplementation of herb mixture can improve growth performance of juvenile parrot fish when water temperature is optimum for growth such as the summer season in Korea.

A Study on the Porcelain Body of $MgO-SiO_2$ System ($MgO-SiO_2$계 자기에 관한 연구)

  • 이응상;이종근;임대영;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 1982
  • This study has examined closely on the various foundamental conditions for the fitting in steatite porcelain as a industrial porcelain of superior quality, and as a decorated porcelain. The materials consisting of the Kyul Sung talc, and the sea water magnesia clinker power which was produced from Sam Hwa-Hwa Sung, as major constituents have been used, and also used Hyup Jin kaolin as clay minerals to give them plasticity. First, the mixture was made of corresponding in the theoretical composition of enstatite with Kyul sung talc and sea water magnesia clinker, and kaolin was added in various kinds of 1%, 2.5% 5%, 10%, and 20% by weight of the mixture. Next, the mixture was fired at the various temperatures from 1330 to 145$0^{\circ}C$. After we examined closely the physical properties and microstructures, we achieved the results that noted from this study were listed below. 1. The addition amount of kaolin should generally be from 5% to 10% by weight of the mixture to give mixture plasticity in steatite porcelain, but preferably about 20% to consider the firing temperature. 2. The temperature of the optimum firing range is from 1390 C to 142$0^{\circ}C$. 3. A case, which the $A_2$ composition had been fired at 142$0^{\circ}C$, showed a good effect in the strength, but showed a bad result in the absorption. Therefore, the specimens of $A_4$ the composition has excellent in properties of matters when the composition is fired at 142$0^{\circ}C$. Also, we consider that the specimens of the $A_5$ composition, which is fired at 139$0^{\circ}C$, is suitable for the $MgO-SiO_2$ porcelain bodies with respect to the various properties.

  • PDF

Effects of Compositions of Mixed Refrigerants on the Performance of a C3MR Natural Gas Liquefaction Process (혼합냉매 조성에 따른 C3MR 천연가스 액화공정 성능 비교)

  • Liu, Jay
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.314-320
    • /
    • 2014
  • The purpose of this work is to optimize composition of mixture refrigerants used in the C3MR (Propane & Mixed Refrigerants) process by a statistical optimization technique. C3MR studied in this work is one of widely used commercial natural gas liquefaction processes with high efficiency. Process simulation was performed in a commercial process simulator and methane ($C_1$), ethane ($C_2$), propane ($C_3$), and nitrogen ($N_2$) were selected as mixed refrigerants. Using the process model, optimum composition of refrigerants mixture was determined via mixture design and central composite design to produce minimum energy consumption. As a result, it was confirmed that energy consumption is reduced down to 11.3% comparing to existing design. It was also compared with heat effectiveness through temperature profile of MCHE (main cryogenic heat exchanger).

A Study on Wall Materials for Flavor Encapsulation (향기 성분의 미세캡슐화를 위한 피복물질에 대한 연구)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1563-1569
    • /
    • 1999
  • For the encapsulation of flavor compounds, maltodextrin (MD), gum arabic (GA) alkenylsuccinated modified starch (MS) and gellan gum were chosen for wall materials and their combination was optimized. Five fruit flavor compounds having boiling point of $90{\sim}200^{\circ}C$ were selected as core materials and their mixture was incorporated with rapeseed oil (flavor mixture to oil = 1 : 4). Flavor compound mixture to wall material ratio of 1 : 4 was selected, and the amount of maltodextrin was fixed to 30% of the wall material mixture. Gellan gum was selected as an additional wall material to increase emulsion stability. The optimum combination ratio of the wall material mixture for maximal total oil retention and minimal surface oil content is : 30.0% MD ; 26.4% GA ; 39.6% MS ; 4% gellan gum.

  • PDF

Analysis of Optimal Mixture Ratio for Extrudate of the Soymilk Residue and Corn Grits by Mixture Design (혼합물 실험 계획법에 의한 두유박과 옥분 압출성형물의 최적 혼합비 분석)

  • Han, Gyu-Hong;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.617-622
    • /
    • 2003
  • Experimental designs were applied to optimize the mixture ratio for the extrudate made by soymilk residue and corn grits. Nine candidate points were examined for their significance on extrudate using the modified distance design. Bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI) and color $(L^*,\;a^*,\;b^*)$ were the significant factors improving the extruded cereal production, and these values were applied to the mathematical models. Results showed that bending force, expansion ratio WSI, WAI and color $(L^*,\;b^*)$ increased with increasing the corn grits, whereas bulk density tended to decrease. The statistical study showed that the fitted models were adequate to describe the contour plot and all responses. Optimum mixture ratio allowing to maximize the two responses (expansion ratio and $b^*$) and minimize the response (WAI) were examined with a numerical optimization methods. The numerical optimization method was obtained as 53.18% : 46.19% (corn grits : soymilk residue).

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.