• Title/Summary/Keyword: optimum mix-proportion

Search Result 73, Processing Time 0.025 seconds

Practical Use of Self-compacting Concrete by Hydraulic Composition Containing a Segregation-Reducing Agent (수경성 물질용 분리저감제를 사용한 무다짐 콘크리트 실용화 연구)

  • 손유신;이승훈;김규동;김경태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, self-compacting concrete is applied in order to achieve workability improvement and rationalization in construction. But self-compacting concrete using viscosity agent has a difficulty in practical use because viscosity agent is invested small quantity and by man-power. Therefore in this paper we have been focused on the development and practical use of self-compacting concrete by hydraulic composition containing the segregation-reducing agent. According to mix variable, we find out right quantity of water, binder and rate of admixture replacement, and also we find out the optimum mix proportion. In the result, self-compacting concrete by hydraulic composition containing the segregation reducing agent gave satisfaction with standard and its demand will increase in the future.

  • PDF

Mix Proportions of Early-Strength Pavement Concrete Using Calcium Nitrate (질산칼슘 혼화재를 사용한 신속개방형 포장 콘크리트의 적정배합비 도출)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.95-100
    • /
    • 2009
  • This study proposed mix proportions of early strength pavement concrete for large size area using calcium nitrate. Therefore, we used type III cement with calcium nitrate. Laboratory tests conducted to air content, slump loss test, setting time test, compressive strength test and flexural strength test. Our early strength pavement concrete mixture proportion proposed in this study for large size area attained the required compressive strength of 21 MPa and a flexural strength of 3.8 MPa, which allowed it to be opened to traffic within 8 hours. Based on test results, we suggested optimum mix proportions of early strength pavement concrete for large size area using calcium nitrate.

Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture (레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Engineering Properties of Eco-Permeable Polymer Concretes Using Blast Furnace Slag Powder and Stone Dust

  • Park Phil Woo;Sung Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.47-53
    • /
    • 2004
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankments, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using blast furnace slag powder and stone dust of industrial by-products as fillers for Eco-permeable polymer concrete. Different mix proportions were tried to find an optimum mix proportion of the Eco­permeable polymer concrete. The tests were carried out at $20{\pm}1^{circ}C$ and $60{\pm}2\%$ relative humidity. At 7 days of curing, unit weight, coefficient of permeability, dynamic modulus of elasticity, compressive, flexural and splitting tensile strengths ranged between $1,821{\~}1,955 kg/m^{3}$, $0.056{\~}0.081\;cm/s$, $114{\times}0^{2}{\~}157{\times}10^{2}\;MPa,\;17.6{\~}24.7\;MPa,\;5.98{\~}7.94\;MPa\;and\;3.43{\~}4.70\;MPa$, respectively. It was concluded that the blast furnace slag powder and stone dust can be used in the Eco-permeable polymer concrete.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

An Experimental Study on Properties of Steel Fiber Reinforced Fresh Concrete Using Waste concrete (폐콘크리트를 이용한 굳지 않은 강섬유 보강 콘크리트의 특성에 관한 실험적 연구)

  • 구봉근;김창운;박재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.245-248
    • /
    • 1999
  • In our standard specification, the specific provision of steel fiber pavement concrete didn't describe yet. The purpose of this study presents criteria of recycled aggregate steel fiber pavement concrete including standard crushed stone steel fiber pavement concrete. This study examined a lot of factors which influence consistency of SFRC(Steel Fibre Reinforced Concrete) including crush stone and recycled aggregate. According to this examination, this study decided optimum S/α and W which are essential to pavement concrete mix proportion. Come to the conclusion, this study is expected to effect economically in recycling of resources and bring to affirmative result in aspect of environment.

  • PDF

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

Cast in Place of the Low Heat.Self Consolidation Concrete on Underground RC Box Structure using Low Heat Portland Cement (저열 포틀랜드 시멘트를 활용한 일반강도 저발열.자기충전 콘크리트의 지하박스 구조물 현장적용에 관한 연구)

  • Ha, Jae-Dam;Kwon, Tae-Hoon;Yoo, Sung-Young;Kim, Young-Woo;Kwon, Tae-Moon;Ahn, Byung-Rak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.215-216
    • /
    • 2009
  • Recently, the application of SCC (Self Consolidation Concrete) gets more necessity, in order to solve the problem of quality control, noise, etc. In this study describe the optimum mix proportion and the experience of cast in place of the SCC in main structure of underground RC box.

  • PDF