• 제목/요약/키워드: optimum geometry

검색결과 277건 처리시간 0.024초

Optimum Design on Lobe Shapes of Gerotor Oil Pump

  • Kim, J.H.;Kim, Chul;Chang, Y.J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1390-1398
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular the pump is an essential machine element that feeds lubricant oil in an automotive engine. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the two rotors. Usually the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used for the study of positive displacement pumps the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter Results obtained from the analysis enable the designer and manufacturer of the oil pump to be more efficient in this field.

슬릿휜형 열교환기의 성능에 대한 설계인자의 영향 (Effect of design factors on the performance of heat exchanger with a slit fin)

  • 윤점열;이관수;김현영;강희찬
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.210-220
    • /
    • 1997
  • This study is to systematically analyze the effect of various kinds of design parameters on heat transfer and pressure drop characteristics of heat exchanger with a slit fin. TAGUCHI method, known to us as a very reasonable tool in the parametric study, is employed in the present work. Experimental factors have been limited to seven cases, considering the production of sample and the cost. The 18 kinds of large scale models are made by compounding level on each factor and the heat transfer and flow characteristics on each model has been analyzed. The present results allow us to be able to quantitatively estimate the various parameters affecting the heat exchanger performance, and main factors for an optimum design of a heat exchanger have been selected. The optimum design value on each parameter was presented and the reproducibility on the results was guaranteed.

  • PDF

특성곡선법과 다중길이 척도법을 이용한 가솔린 기관의 기관성능시뮬레이션 개선에 관한 연구 (A Study on the Improvment of Engine Performance Simulation Using Multi-Length-Scale Model and MOC)

  • 김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.605-616
    • /
    • 2001
  • Generally, there are two methods in researching internal combustion engines. One is by experimental research and the other is by computer simulation. The experimental research has many merits that researchers can get data for engine performance, but it has also some demerit of cost and time. If there is an engine simulation code with accuracy for the solution, it is very convenient to predict the performance and optimum design value of the engine. In this study, engine performance simulation program has been improved to predict the transient variation of properties of gas in cylinder, intake and exhaust manifolds, There total program code was developed to calculate the pressure, flame factor and turbulent intensity, As a result of present study, the authors could predicted the in-cylinder pressure, intake manifold pressure and the engine performance in various conditions. The authors also could easily prepare the tool if optimum design of manifold and in-cylinder geometry.

  • PDF

정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계 (Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions)

  • 조장근;박원규
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.

유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계 (Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis)

  • 차성훈;신명수;이혜진;김종봉
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

소형 에어리프트 펌프의 성능특성에 관한 연구 (A Study on Performance Characteristics of Small Airlift Pump)

  • 오세경;이강용
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.34-39
    • /
    • 2000
  • Performance data in the literature on air lift pumps have been based primarily on pumps of long length and large diameter (high lift pumps). Since mariculture operations involve pumps of relatively short length and small diameter, performance data are required for efficient operation. To provide such data, an experimental apparatus was designed and fabricated to test all lift pumps from 2.1 to 3.4 cm inside diameter and from 40 to 300 cm in length. Instrumentation was provided to measure water flow rate and air flow rate as well as water temperature, air temperature, and pressure throughout the system. Results from this study correlate well with high lift pump data in that, for a given pump geometry, maximum water flow occurs for a specific air flow rate. Driving the pump with air flows larger or smaller than this optimum flow rate will decrease the pumping rate. The optimum flows are significantly different for low lift pumps compared to high lift pumps. However, the pumping rate for low lift pumps approaches that for high lift pumps with increasing length.

  • PDF

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

벤틸레이티드 디스크 브레이크 로터의 최적설계 (Optimal Design of Ventilated Disc Brake Rotor)

  • 이수기;성부용;하성규
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.593-602
    • /
    • 2000
  • The shape optimization is performed to minimize the judder of ventilated disc brake rotor that is induced by the thermal deformation of the disc. A three-dimensional finite element is developed to analyze the coupled system of temperature and displacement field, and the thermal conductivity and mechanical stiffness matrices are simultaneously taken into account. To reduce computing time, an equivalent heat transfer rate is introduced approximating the heat transfer rate on the disc surface. A deformation factor is introduced to describe the thermal deformation causing the judder. The deformation factor is chosen as an objective function in the optimization process. Consequently an optimum design is then performed minimizing the deformation factor with the design variables of the shape of the disc. The optimum design procedure presented in this study is proven to be an effective method of minimizing the judder, and it reduces the thermal deformation by 23% of the initial geometry.

제로터 오일 펌프 로버형상에 관한 최적설계 (Optimum design on the lobe shapes of Gerotor Oil Pump)

  • 김재훈;김창호;김철
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.124-131
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. Especially the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in odor to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used far the study of positive displacement pumps: the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field, and the system could serve as a valuable one for experts and as a dependable training aid for beginners.

워엄기어 감속기의 출력피니언 최적설계와 해석 (Optimization and Analysis of Output Pinion Design for Worm Gear Reducer)

  • 조성현;김현경;김동선;진진;류성기
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.108-113
    • /
    • 2020
  • Pinions are generally heavy and integrated with a shaft. Thus, fabricating a pinion is a material- and machining-intensive task characterized by low productivity. Contact of the output pinion with a sliding surface or a cloud contact causes loss of power because of friction. Consequently, the output pinion undergoes considerable wear and tear at its ends, which adversely affects the overall transmission efficiency of decelerators. To improve transmission efficiency and extend gear life, an optimum output pinion design is required. To this end, in this study, an output pinion for worm gear decelerators was designed and optimized by means of product verification through prototyping and performance evaluation to improve gear life and productivity. The optimized design was validated and subjected to structural analysis.