• 제목/요약/키워드: optimum design

검색결과 5,666건 처리시간 0.035초

Optimum design of FRP box-girder bridges

  • Upadhyay, Akhil;Kalyanaraman, V.
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.539-554
    • /
    • 2010
  • Light weight superstructure is beneficial for bridges in remote areas and in emergency erection. In such weight sensitive applications, combination of fibre reinforced plastics (FRP) as material and box-girders as a structural system have great scope. This combination offers various options to tailor structure and its elements but this flexibility poses greater challenge in optimum design. In this paper a procedure is derived for a generalised optimum design of FRP box-girder bridges, using genetic algorithms (GA). The formulation of the optimum design problem in the form of objective function and constraints is presented. Size, configuration and topology optimization are done simultaneously. A few optimum design studies are carried out to check the performance of the developed procedure and to get trends in the optimum design which will be helpful to the new designers.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

연속 및 이산화 최적알고리즘에 의한 단동온실구조의 최적설계 (Optimum Design of Greenhouse Structures Using Continuous and Discrete Optimum Algorithms)

  • 박춘욱;이종원;이현우;이석건
    • 한국공간구조학회논문집
    • /
    • 제5권4호
    • /
    • pp.61-70
    • /
    • 2005
  • 본 논문은 SUMT와 유전자알고리즘을 근거한 연속 및 이산최적설계 알고리즘에 의한 최적설계 프로그램을 개발하였다. 본 연구의 최적설계는 단동온실 구조물의 단면 연속 및 이산 최적설계가 각각 동시에 수행된다. 본 연구에서 목적함수는 구조물의 중량이고, 제약조건식은 한계상태설계기준에 대한 설계 제한식이다. 설계변수는 원형단면의 직경과 두께이다. 그리고 본 연구의 SUMT 및 유전자 알고리즘에 의한 연속 및 이산화 최적설계 프로그램의 적용을 위해 설계 예를 들었다.

  • PDF

프리스트레스트 콘크리트 거더 철도교의 최적설계 (Optimum Design of Prestressed Concrete Girder Railway Bridge)

  • 조선규;윤석구;서동주;정재동;김현우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

인공생명 알고리듬을 이용한 저널 베어링의 최적설계 (Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

내진제약조건(耐震制約條件)을 갖는 옹벽(擁壁)의 최적설계(最適設計) (Optimum Design of Retaining Wall with Seismic Constraints)

  • 김기대
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 2003
  • In this paper, optimum design is considered over the retaining wall with seismic constraints. The sequential linear programming method(SLP) is used as a rational approach to this optimum design. To make a comparison between the seismic design and the normal design, retaining wall with 4~7m height were adopted. It is shown that the seismic design is more expensive (over 30%) than the normal design for the construction cost.

  • PDF

저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로- (Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method -)

  • 김종옥;고재군
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

신뢰성에 기초한 강상형 연속교의 단면 최적설계 (Reliability-Based Optimization of Continuous Steel Box Girder Bridges)

  • 조효남;이두화;정지승;민대홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.145-154
    • /
    • 1997
  • The results of optimum design by the deterministic approach adopted in the current design codes depend upon the safety levels of the applied code. But, it is now generally recognized that structural problems are nondeterministic and, consequently, that engineering optimum design must cope with uncertainties. Therefore, it is not an overstatement to affirm that the combination of reliability-based design procedures and optimization techniques is the only means of providing a powerful tool to obtain a practical optimum design solution. In the paper, reliability based optimum design procedure as a rational approach to optimum structural design is presented. The design constraints are formulated based on the ASD, LRFD and reliability theories. The reliability analysis is based on an advanced first-order second moment approach. Uncertainties in the structural strength and loading due to inherent variability as well as modeling and prediction errors are included in failure due to combined bending and shear. For the realistic reliability-based optimization of continuous steel box girder bridges, interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. Comparative results are presented when the ASD criteria are used for the optimum design of a structure under reliability constraints. In addition, this study comparatively shows the results of the optimum design for various criteria of design codes.

  • PDF

유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계 (Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.131-135
    • /
    • 2009
  • We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

모티프를 이용한 최적설계 통합환경 개발 (Development of Integrated Environment for Optimum Design Using Motif)

  • 임오강;조헌;김영현;이병우
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.97-105
    • /
    • 1996
  • 본 연구에서는 모티프(Motif), ANCI-C, Fortran 언어를 사용하여 그래픽 입출력과 대화식 입력이 가능하며, 최적설계 수행에 필요한 모든 작업을 같이 병행할 수 있는 최적설계 통합환경을 개발하였다. 최적설계 통합환경은 전처리기(preprocessor), 최적설계부, 후처리기(postprocessor)로 구성하였다. 전처리기에서는 유한요소모형의 구성에 필요한 정보를 입력한 후 사용자가 입력한 정보를 즉시 확인할 수 있도록 하였다. 최적설계부에서는 전처리기에서 입력한 유한요소 정보를 바탕으로 최적설계 매개변수를 정의하고, 해를 구하는 과정으로 구성하였다. 후처리기에서는 구조물의 변형, 응력, 목적함수의 변화 등의 해석 결과를 가시화 함으로써 결과에 대한 비교.검토를 용이하게 하였다.

  • PDF