• Title/Summary/Keyword: optimum combustion condition

Search Result 95, Processing Time 0.019 seconds

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Post-combustion CO2 capture with potassium L-lysine (Potassium L-lysine을 이용한 연소 후 이산화탄소 포집)

  • Lim, Jin Ah;Yoon, Yeo Il;Nam, Sung Chan;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4627-4634
    • /
    • 2013
  • Carbon dioxide is one of the main causes of global warming. In order to develop a novel absorbent, the characteristics of amino acid salts solution as a solvent for $CO_2$ capture in continuous process were investigated. The cost of $CO_2$ capture is almost 70% of total cost of CCS (carbon dioxide capture and storage). In the carbon dioxide capture process, process maintenance costs consist of the absorbent including the absorption, regeneration, degradation, and etc. It is very important to study the characteristics of absorbent in continuous process. In this study, we have investigated the properties of potassium L-lysine (PL) for getting scale-up factors in continuous process. To obtain optimum condition for removal efficiency of $CO_2$ in continuous process by varying liquid-gas (L/G) ratio, concentration of $CO_2$ and absorbent (PL) were tested. The stable condition of absorber and regenerator (L/G) ratio is 3.5. In addition, PL system reveals the highest removal efficiency of $CO_2$ with 3.5 of L/G and 10.5 vol% $CO_2$ ($1.5Nm^3/h$).

Effect of Desorption Pressure on Adsorption and Desorprtion Breakthrough Behaviors of Carbon Dioxide with Zeolite 3A, 4A, 5A, and 13X Pellets (제올라이트 3A, 4A, 5A, 13X 펠렛의 탈착 압력에 따른 이산화탄소 흡·탈착 파과특성)

  • Sim, Jungbo;Noh, Young-Kyoung;Park, Young Cheol;Kim, Hyunuk;Ryu, Ho-Jung;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • The effect of desorption pressure on $CO_2/N_2$ breakthrough behaviors for 4 different adsorbents was studied at a fixed bed. Zeolite 3A, 4A, 5A, and 13X pellets were used as adsorbents. Cyclic operations were executed with varying desorption pressure from vacuum (0 bar) to 3 bar while other conditions such as adsorption step pressure (3 bar), temperature (293 K), composition ($CO_2:N_2=10:90$vol%) and flow rate (400 ccm) were fixed at constant values. Each adsorption and desorption step was set as 80 min, which totaled up to 160 min per a cycle. 5 cycles with adsorption and desorption steps were run overall. After the experiment, breakthrough time, saturation time, and adsorption amount were measured and compared in order to find an optimum adsorbent and a proper operating condition for a post combustion $CO_2$ capture process.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

A Study on Fuel Characteristics of Mixtures Using Torrefied Wood Powder and Waste Activated Carbon (반탄화 목분과 폐활성탄 혼합물의 복합연료활용을 위한 연료적 특성에 관한 연구)

  • Lee, Chang Goo;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.135-143
    • /
    • 2015
  • This study evaluated fuel properties of composite materials which were prepared by mixing a waste activated carbon from the used purifier filter with torrefied wood powder. Wood species of the raw material of torrefied wood powder are oak wood (Quercus serrata Thunb. ex Murray) and pine wood (Pinus densiflora Siebold & Zucc). And the treatment conditions used for this study were 300 s, 450 s, and 600 s at $200^{\circ}C$ for the wood roaster. Also, the mixing ratios are 5 : 95, 10 : 90, 15 : 85, 20 : 80, 40 : 60, 60 : 40 and 80 : 20 (waste activated carbon : torrefied wood powder). The fuel properties such as highly heating value (HHV), elementary analysis and ash content were evaluated. The results obtained are followings; 1. Despite the same treatment condition of wood roasting, pine wood has higher carbon contents than oak wood. Therefore, pine wood indicated the optimum carbonization at low temperature and short treatment times. 2. The gross calorific value and ash content increased as the mixing ratio of waste activated carbon increased. 3. Mixtures of the waste activated carbon and torrefied wood powder showed greater gross calorific value than those of the mixtures of waste activated carbon and the untreated wood powder. Also, the pine wood resulted in higher heating value that thaose of the oak wood. 4. When composite fuels that were composed waste activate carbon and wood powder are used, higher temperature conditions are required because the combustion is incomplete at $800^{\circ}C$ and 4 hours. 5. The increasing rate of the gross calorific value of mixtures of waste activated carbon and untreated wood powder is higher than does the mixtures of waste activated carbon and torrefied wood powder. Also, this phenomenon is more obvious for pine woods. Therefore, an optimal mixing ratio of waste activated carbon was determined to be between 5% and 10% (wt%). Also, this condition satisfied the requirement of the No.1 grade of wood pellet.