• Title/Summary/Keyword: optimum analysis

검색결과 5,548건 처리시간 0.032초

반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계 (Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis)

  • 한형석;안형진;박태원
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.

마찰 교반 용접된 철도 차량용 A6005 압출재의 기계적 성능 향상을 위한 최적 공법 설계 (Optimum Design of the Friction Stir Welding Process on A6005 Extruded Alloy for Railway Vehicles to Improve Mechanical Properties)

  • 원시태;김원경
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.81-87
    • /
    • 2009
  • Recently, extruded aluminium-alloy panels have been used in the car bodies for the purpose of the light-weight of railway vehicles and FSW(Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. This paper presents the optimum design of the FSW process on A6005 extruded alloy for railway vehicles to improve its mechanical properties. Rotational speed, welding speed and tilting angle of the tool tip were chosen as design parameters. Three objective functions were determined; maximizing the tensile strength, minimizing the hardness and maximizing the difference between the normalized tensile strength and hardness. The tensile tests and the hardness tests for fifteen FSW experiments were carried out according to the central composite design table. Recursive model functions on three characteristic values, such as the tensile strength, the hardness difference(${\Delta}Hv$) and the difference of normalized tensile strength and ${\Delta}Hv$, were estimated according to the classical response surface analysis methodology. The reliability of each recursive function was verified by F-test using the analysis of variance table. Sensitivity analysis on each characteristic value was done. Finally, the optimum values of three design parameters were found using Sequential Quadratic Programming algorithm.

유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계 (Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis)

  • 김세호;김승호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

민감도가 고려된 알고리듬을 이용한 최적화 방법에 관한 연구 (A Study on the Optimization Method using the Genetic Algorithm with Sensitivity Analysis)

  • 이재관;신효철
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1529-1539
    • /
    • 2000
  • A newly developed optimization method which uses the genetic algorithm combined with the sensitivity analysis is presented in this paper. The genetic algorithm is a probabilistic method, searching the optimum at several points simultaneously, requiring only the values of the object and constraint functions. It has therefore more chances to find global solution and can be applied various problems. Nevertheless, it has such shortcomings that even it approaches the optimum rapidly in the early stage, it slows down afterward and it can't consider the constraints explicitly. It is only because it can't search the local area near the current points. The traditional method, on the other hand, using sensitivity analysis is of great advantage in searching the near optimum. Thus the combination of the two techniques makes use of the individual advantages, that is, the superiority both in global searching by the genetic algorithm and in local searching by the sensitivity analysis. Application of the method to the several test functions verifies that the method suggested is very efficient and powerful to find the global solutions, and that the constraints can be considered properly.

택시의 운행 데이터에 기반한 최적의 운행 속도 분석 (An Analysis for Optimal Moving Speed of Taxi based on Taxi Service Data)

  • 이구연;김화종
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권2호
    • /
    • pp.317-324
    • /
    • 2015
  • 본 연구에서는 유료 운송시스템의 대표적인 예인 택시를 가정하여, 최대 수익을 위한 최적의 운행속도에 대한 수식적인 분석을 수행한다. 손님의 분포에 따라 평균 운행속도를 5km/h부터 80km/h까지 시속을 5km/h씩 늘려가며 분석하였으며 연비는 LPG차량의 실제적인 연비를 적용하였으며, 요금 또한 실제의 예를 적용하였다. 분석 결과, 택시의 속도가 높을수록 손님을 태우는 확률이 높아지나, 따라서 연료비 부담도 함께 늘어나므로 손님의 분포정도에 따라 수익금에 차이가 나는 것을 확인 하였으며, 이를 기반으로 하여 최대 수익을 위한 최적의 속도를 구하였다.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

단층대를 통과하는 터널의 안정성확보에 관한 연구 (A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing)

  • 박인준;최정환;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

원자로용 수중탐상기의 구조해석 (Structural Analysis of RIROB(Reactor Inspection Robot))

  • 최석호;권영주;김재희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF

최대 군위상 분해 부밴드 인접투사 적응필터를 위한 초기 최적 스텝사이즈 해석 (On the Initial Optimum Step Size for the MPDSAP Adaptive Filter)

  • 김영민;손상욱;배현덕;최훈
    • 융합신호처리학회논문지
    • /
    • 제12권1호
    • /
    • pp.20-25
    • /
    • 2011
  • 부밴드 구조에서 투사차원이 P인 전밴드 인접투사 적응필터는 최대 군위상 분해와 노블아이덴티티를 적용함으로써 P개의 적응 부필터로 분해된다. 각각의 적용 부필터는 투사차원이 1인 간단한 계수 갱신식을 갖게 된다. 이러한 부밴드 분해기법은 구현관점에서 가장 실용적인 해법 중 하나이다. 많은 응용에서 활용을 위해 MPDSAP 적응 필터의 최적 스텝사이즈 해석이 필요하다. 본 논문은 MPDSAP 적응 필터의 MSE에 대한 개선된 해석 모델을 제안하고 초기 최적 스텝사이즈를 유도한다. 컴퓨터 시뮬레이션을 통해 MSE의 개선된 해석 모텔과 유도된 최적 초기 스텝사이즈에 대해 이론과 실험적 결과 사이의 일치함을 확인하였다.