• Title/Summary/Keyword: optimum analysis

Search Result 5,548, Processing Time 0.031 seconds

Optimum Design of Piled Raft Foundations using Genetic Algorithm (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계)

  • 김홍택;강인규;황정순;전응진;고용일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF

A Study on the Analysis of Grinding Mechanism and Development of Dressig System by using Optimum In-process Electrolytic Dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명 및 시스템 개발에 관한연구)

  • 이은상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.96-101
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The present dressing system cannot have controll of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

  • PDF

Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin (삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화)

  • Kang, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

Minimum Weiht Design of Transverse Strength Member by Using Finite Element Method (유한요소법에 의한 횡강도부재의 최소중량설계)

  • Seung-Soo,Na;Keh-Sik,Min;Hang-Sub,Urm;Dong-Hee,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 1985
  • The optimum design of the transverse strength member was carried out with respect to the minimum hull weight taken account of the 2-dimensional analysis by using Finite Element Method. The optimum sizes of the member such as web height, web thickness, lower flange breadth, lower flange thickness, radii, were calculated by using Hooke and Jeeves direct search method. The optimum structure satisfies requirements to allowable bending and shear stresses in each strength member. The optimum design results were compared with the practical ship design. The optimum design saves the hull weight than that of practical design amounts to 9.6% of that.

  • PDF

A Study on the Selection of Optimum Auto-design Data using FEA (유한요소해석을 이용한 최적자동설계 데이터 선정에 관한 연구)

  • 박진형;이승수;김민주;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.406-409
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEA. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. In rachet wheel, greatest equivalence stress originates in key groove corner and KS standard is proved the design for security.

  • PDF

Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System (PS 콘크리트 바닥판 및 고강도 2주형 거더 시스템의 최적설계평가)

  • 박태훈;박문호;조창근;권민호;남유석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.185-192
    • /
    • 2003
  • This study presents the Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System. Recently, for the simplification of structure and the long length of bridge, a small number girder bridge which minimized a number of girder by two is much designed and constructed. For the structural analysis, a finite element formulation considering with even the matter of torsion in the three-dimensional problem is presented. And connectively, for the design of optimum section, an algorithm of optimum design is developed. The section of a small number girder bridge which constituted of two girders and PS Concrete Deck is optimized by using optimum program developed in this study. and two girders bridge refered in this study is proved a efficiency and a economy by being compared and checked to the general plate girder bridge with five girder and Reinforced Concrete Deck.

  • PDF

Optimum PI Controller Design for an Oil Cooler System Using GA (GA를 이용한 오일쿨러시스템의 최적 PI제어기 설계)

  • Jung, Young-Mi;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • This paper deals with optimum PI controller design using genetic algorithm to improve control performance and robustness for an oil cooler system. The optimum PI gain was found to minimize an object function, integrated absolute error, and to satisfy control design specifications such as overshoot and settling time based on practical transfer function of the oil cooler system. The control performance and robustness were investigated by comparing indicial responses and Bode diagram analysis with respect to three kinds of PI gains obtained from different gain decision manners. Moreover, the robustness against to input disturbances, sinusoidal wave form and abrupt single pulse, was evaluated. The computer simulation results showed that the suggested optimum gain can establish desirable control performance and strong robustness with easy design process.

Reliability Optimum Design of Slab System based on Lagrange Multipliers (Lagrange Multipliers에 의한 슬래브시스템의 신뢰성 최적설계)

  • Kim, Hyeon-Seak;Lee, Jeung-Bin;Jung, Chul-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.113-124
    • /
    • 1997
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering exprience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on two-way slab system which could possibly replace optimum design based traditional provisions of the current code, based on the AFOSM reliablity theory.

  • PDF

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF