• 제목/요약/키워드: optimizer

Search Result 308, Processing Time 0.021 seconds

Design and Implementation of a System for Recommending Related Content Using NoSQL (NoSQL 기반 연관 콘텐츠 추천 시스템의 설계 및 구현)

  • Ko, Eun-Jeong;Kim, Ho-Jun;Park, Hyo-Ju;Jeon, Young-Ho;Lee, Ki-Hoon;Shin, Saim
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1541-1550
    • /
    • 2017
  • The increasing number of multimedia content offered to the user demands content recommendation. In this paper, we propose a system for recommending content related to the content that user is watching. In the proposed system, relationship information between content is generated using relationship information between representative keywords of content. Relationship information between keywords is generated by analyzing keyword collocation frequencies in Internet news corpus. In order to handle big corpus data, we design an architecture that consists of a distributed search engine and a distributed data processing engine. Furthermore, we store relationship information between keywords and relationship information between keywords and content in NoSQL to handle big relationship data. Because the query optimizer of NoSQL is not as well developed as RDBMS, we propose query optimization techniques to efficiently process complex queries for recommendation. Experimental results show that the performance is improved by up to 69 times by using the proposed techniques, especially when the number of requested related keywords is small.

Optimal Weapon-Target Assignment of Multiple Dissimilar Closed-In Weapon Systems Using Mixed Integer Linear Programming (혼합정수선형계획법을 이용한 다수 이종 근접 방어 시스템의 최적 무장 할당)

  • Roh, Heekun;Oh, Young-Jae;Tahk, Min-Jea;Jung, Young-Ran
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.787-794
    • /
    • 2019
  • In this paper, a Mixed Integer Linear Programming(MILP) approach for solving optimal Weapon-Target Assignment(WTA) problem of multiple dissimilar Closed-In Weapon Systems (CIWS) is proposed. Generally, WTA problems are formulated in nonlinear mixed integer optimization form, which often requires impractical exhaustive search to optimize. However, transforming the problem into a structured MILP problem enables global optimization with an acceptable computational load. The problem of interest considers defense against several threats approaching the asset from various directions, with different time of arrival. Moreover, we consider multiple dissimilar CIWSs defending the asset. We derive a MILP form of the given nonlinear WTA problem. The formulated MILP problem is implemented with a commercial optimizer, and the optimization result is proposed.

Performance Evaluation of Machine Learning Optimizers (기계학습 옵티마이저 성능 평가)

  • Joo, Gihun;Park, Chihyun;Im, Hyeonseung
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.766-776
    • /
    • 2020
  • Recently, as interest in machine learning (ML) has increased and research using ML has become active, it is becoming more important to find an optimal hyperparameter combination for various ML models. In this paper, among various hyperparameters, we focused on ML optimizers, and measured and compared the performance of major optimizers using various datasets. In particular, we compared the performance of nine optimizers ranging from SGD, which is the most basic, to Momentum, NAG, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax, and Nadam, using the MNIST, CIFAR-10, IRIS, TITANIC, and Boston Housing Price datasets. Experimental results showed that when Adam or Nadam was used, the loss of various ML models decreased most rapidly and their F1 score was also increased. Meanwhile, AdaMax showed a lot of instability during training and AdaDelta showed slower convergence speed and lower performance than other optimizers.

Reconstruction of parametrized model using only three vanishing points from a single image (한 영상으로부터 3개의 소실 점들만을 사용한 매개 변수의 재구성)

  • 최종수;윤용인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.419-425
    • /
    • 2004
  • This paper presents a new method which is calculated to use only three vanishing points in order to compute the dimensions of object and its pose from a single image of perspective projection taken by a camera. Our approach is to only compute three vanishing points without informations such as the focal length and rotation matrix from images in the case of perspective projection. We assume that the object can be modeled as a linear function of a dimension vector v. The input of reconstruction is a set of correspondences between features in the model and features in the image. To minimize each the dimensions of the parameterized models, this reconstruction of optimization can be solved by standard nonlinear optimization techniques with a multi-start method which generates multiple starting points for the optimizer by sampling the parameter space uniformly.

Repetitive Response Surface Enhancement Technique Using ResponseSurface Sub-Optimization and Design Space Transformation (반응모델 최적화와 설계공간 변환을 이용한 반복적 반응면 개선 기법 연구)

  • Jeon, Gwon-Su;Lee, Jae-U;Byeon, Yeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2006
  • In this study, a repetitive response surface enhancement technique (RRSET) is proposed as a new system approximation method for the efficient multidisciplinary design and optimization (MDO). In order to represent the highly nonlinear behavior of the response with second order polynomials, RRSET introduces a design space transformation using stretching functions and repetitive response surface improvement. The tentative optimal point is repetitively included to the set of experimental points to better approximate the response surface of the system especially near the optimal point, hence a response surface with significantly improved accuracy can be generated with very small experimental points and system iterations. As a system optimizer, the simulated annealing, which generates a global design solution is utilized. The proposed technique is applied to several numerical examples, and demonstrates the validity and efficiency of the method. With its improved approximation accuracy, the RRSET can contribute to resolve large and complex system design problems under MDO environment.

Development of Machine Learning Model for Predicting Distillation Column Temperature (증류공정 내부 온도 예측을 위한 머신 러닝 모델 개발)

  • Kwon, Hyukwon;Oh, Kwang Cheol;Chung, Yongchul G.;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.520-525
    • /
    • 2020
  • In this study, we developed a machine learning-based model for predicting the production stage temperature of distillation process. It is necessary to predict an accurate temperature for control because the control of the distillation process is done through the production stage temperature. The temperature in distillation process has a nonlinear complex relationship with other variables and time series data, so we used the recurrent neural network algorithms to predict temperature. In the model development process, by adjusting three recurrent neural network based algorithms, and batch size, we selected the most appropriate model for predicting the production stage temperature. LSTM128 was selected as the most appropriate model for predicting the production stage temperature. The prediction performance of selected model for the actual temperature is RMSE of 0.0791 and R2 of 0.924.

Block Histogram Compression Method for Selectivity Estimation in High-dimensions (고차원에서 선택율 추정을 위한 블록 히스토그램 압축방법)

  • Lee, Ju-Hong;Jeon, Seok-Ju;Park, Seon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.927-934
    • /
    • 2003
  • Database query optimates the selectivety of a query to find the most efficient access plan. Multi-dimensional selectivity estimation technique is required for a query with multiple attributes because the attributes are not independent each other. Histogram is practically used in most commercial database products because it approximates data distributions with small overhead and small error rates. However, histogram is inadequate for a query with multiple attributes because it incurs high storage overhead and high error rates. In this paper, we propose a novel method for multi-dimentional selectivity estimation. Compressed information from a large number of small-sized histogram buckets is maintained using the discrete cosine transform. This enables low error rates and low storage overheads even in high dimensions. Extensive experimental results show adventages of the proposed approach.

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

An Efficient Approach on Reliability Analysis under Multidisciplinary Analysis Systems (다분야 통합해석 시스템의 효율적인 신뢰성 해석기법 연구)

  • Ahn, Joong-Ki;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.18-25
    • /
    • 2005
  • Existing methods have performed the reliability analysis using nonlinear optimization techniques. This is mainly due to the fact that they directly apply Multidisciplinary Design Optimization(MDO) frameworks to the reliability analysis formulation. Accordingly, the reliability analysis and the Multidisciplinary Analysis(MDA) are tightly coupled in a single optimizer, which hampers utilizing the recursive and function-approximation based reliability analysis methods such as the Advanced First Order Reliability Method(AFORM). In order to utilize the efficient reliability analysis method under multidisciplinary analysis systems, we propose a new strategy named Sequential Approach on Reliability Analysis under Multidisciplinary analysis systems(SARAM). In this approach, the reliability analysis and the MDA are decomposed and arranged in a sequential manner, making a recursive loop. The efficiency of the SARAM method was verified using three illustrative examples taken from the literatures. Compared with existing methods, it showed the least number of subsystem analyses over other methods while maintaining accuracy.

An Evaluation of Multiple-input Dual-output Run-to-Run Control Scheme for Semiconductor Manufacturing

  • Fan, Shu-Kai-S.;Lin, Yen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.54-67
    • /
    • 2005
  • This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the equipment model could be appropriately described by a pair of second-order polynomial functions in terms of a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manufacturing in this evaluation, and there are five different CMP process scenarios demonstrated, including mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the execution of next run. The main components of ADROC are described and its control performance is assessed. It reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.