• Title/Summary/Keyword: optimized

Search Result 12,773, Processing Time 0.041 seconds

Reason of Die Fracture in Hot Forging of an Aluminum Fixed Scroll and Its Practical Measures (알루미늄 고정 스크롤 열간 단조공정의 금형 파괴 원인 및 실용적 대책)

  • Kim, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.156-161
    • /
    • 2017
  • In this study, the reason of die fracture occurring in hot forging of an aluminum fixed scroll was studied, based on experiments and finite element predictions. The material is assumed to be rigid-viscoplastic, and the die is rigid for the finite element predictions. The stress in the tension at the wrap root is known to cause brittle fracture, and the increase in the tensile stress is owing to the unbalanced filling of material into the die cavities between both sides of the warp. Based on the empirical and numerical achievements, the effects of geometrical parameters of the material on the die fracture were examined to find practical measures for elongated die life. It has been shown from the parametric study that the material with the optimized trapezoidal cross-section, which can be easily made during cutting or the optimized cylindrical billet with its eccentric placement in the die cavity, can considerably reduce the magnitude of the tensile stress around the die corner fractured, indicating that economical manufacturing with reduced number of stages and elongated die life can be realized at once using the optimized practical initial material.

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

Comparative Study on Size Optimization of a Solar Water Heating System in the Early Design Phase Using a RETScreen Model with TRNSYS Model Optimization (RETScreen 모델이용 태양열온수시스템 초기설계단계 설계용량 최적화기법의 TRNSYS 모델과의 비교분석)

  • Lee, Kyoung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.693-699
    • /
    • 2013
  • This paper describes a method for size optimization of the major design variables for solar water heating systems at the stage of concept design. The widely used RETScreen simulation tool was used for optimization. Currently, the RETScreen tool itself does not provide a function for optimization of the design parameters. In this study, an optimizer was combined with the software. A comparative study was performed to evaluate the RETScreen-based approach with the case study of a solar heating system in an office building. The optimized results using the RETScreen model were compared to previously published results with the TRNSYS model. The objective function of the optimization is the life-cycle cost of the system. The optimized design results from the RETScreen model showed good agreement with the optimized TRNSYS results for the solar collector area and storage volume, but presented a slight difference for the collector slope angle in terms of the converged direction of the solutions. The energy cost, life-cycle cost, and thermal performance regarding collector efficiency, system efficiency, and solar fraction were compared as well, and the RETScreen model showed good agreement with the TRNSYS model for the conditions of the base case and optimized design.

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

Quantitative Analysis and Comparisons between In-Phase Control and Energy-Optimized Control for Series Power Quality Controllers

  • Xinming, Hunag;Jinjun, Liu;Hui, Zhang
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.553-566
    • /
    • 2009
  • In-phase control and energy-optimized control are the two major control strategies proposed for series power quality controllers (SPQC). However quantitative analysis and comparison between these two control strategies is quite limited in previous publications. In this paper, an extensive quantitative analysis is carried out on these two control strategies through phasor diagram approach, and a detailed quantitative comparison is conducted accordingly. The load current is used as the reference phasor, and this leads to a simpler and clearer phasor diagram for the quantitative relationship. Subsequently detailed analysis of SPQC using in-phase control and energy-optimized control are provided respectively, under different modes both for under voltage/voltage sag and for over voltage/voltage swell. The closed form analytic expressions and the curves describing SPQC compensation characteristics are obtained. The detailed system power flow is figured out for each mode, and the detailed quantitative comparison between the two control strategies is then carried out. The comparison covers several aspects of SPQC, such as required compensating voltage magnitude, required capacity of energy storage component, and maximal ride-through time. In the end, computer simulation and prototype experimental results are shown to verify the validity of all the analysis and the result of the comparison.

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

Analysis and Optimization of the Axial Flux Permanent Magnet Synchronous Generator using an Analytical Method

  • Ikram, Junaid;Khan, Nasrullah;Junaid, Qudsia;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.257-265
    • /
    • 2017
  • This paper presents a 2-D analytical method to calculate the back EMF of the axial flux permanent magnet synchronous generator (AFPMSG) with coreless stator and dual rotor having magnets mounted on both sides of rotor yoke. Furthermore, in order to reduce the no load voltage total harmonics distortion (VTHD), the initial model of the coreless AFPMSG is optimized by using a developed analytical method. Optimization using the 2-D analytical method reduces the optimization time to less than a minute. The back EMF obtained by using the 2-D analytical method is verified by a time stepped 3-D finite element analysis (FEA) for both the initial and optimized model. Finally, the VTHD, output torque and torque ripples of both the initial and optimized models are compared with 3D-FEA. The result shows that the optimized model reduces the VTHD and torque ripples as compared to the initial model. Furthermore, the result also shows that output torque increases as the result of the optimization.

OPTIMIZED NUMERICAL ANNULAR FLOW DRYOUT MODEL USING THE DRIFT-FLUX MODEL IN TUBE GEOMETRY

  • Chun, Ji-Han;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.387-396
    • /
    • 2008
  • Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code.

A New Route Optimization Scheme for Network Mobility: Combining ORC Protocol with RRH and Using Quota Mechanism

  • Kong, Ruoshan;Feng, Jing;Gao, Ren;Zhou, Huaibei
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.91-103
    • /
    • 2012
  • Network mobility (NEMO) based on mobile IP version 6 has been proposed for networks that move as a whole. Route optimization is one of the most important topics in the field of NEMO. The current NEMO basic support protocol defines only the basic working mode for NEMO, and the route optimization problem is not mentioned. Some optimization schemes have been proposed in recent years, but they have limitations. A new NEMO route optimization scheme-involving a combination of the optimized route cache protocol (ORC) and reverse routing header (RRH) and the use of a quota mechanism for optimized sessions (OwR)-is proposed. This scheme focuses on balanced performance in different aspects. It combines the ORC and RRH schemes, and some improvements are made in the session selection mechanism to avoid blindness during route optimization. Simulation results for OwR show great similarity with those for ORC and RRH. Generally speaking, the OwR's performance is at least as good as that of the RRH, and besides, the OwR scheme is capable of setting up optimal routing for a certain number of sessions, so the performance can be improved and the cost of optimal routing in nested NEMO can be decreased.

Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis (반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구)

  • Jang, Bong Jin;Park, Cheol woo;Kim, Seung Won;Ju, Min Kwan;Park, Ki Tae;Lee, Sang Yoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.