• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.025 seconds

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.

Optimization of Magnetic Abrasive Polishing Process using Run to Run Control (Run to Run 제어 기법을 이용한 자기연마 공정 관리)

  • Ahn, Byoung-Woon;Park, Sung-Jun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2009
  • In order to optimize the polishing process, Run to Run control scheme has been applied to the micro mold polishing in this study. Also, to fully understand the effect of parameters on the surface roughness a design of experiment is performed. By linear approximation of main factors such as gap and rotational speed of micro quill, EWMA (Exponential Weighted Moving Average) gradual mode controller is adopted as a optimizing tool. Consequently, the process converged quickly at a target value of surface roughness Ra 10nm and Rmax 50nm, and was hardly affected by unwanted process noises like initial surface quality and wear of magnetic abrasives.

A Simulation Study for Optimizing the Functionality of an Automated Storage and Retrieval System (자동창고 시스템의 최적안 도출을 위한 모의실험적 연구)

  • Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.505-511
    • /
    • 2014
  • The functional role of warehouses in modern industry is changing from an established concept of storage to a concept of circulation. The target of this study is to improve the stacker crane's efficiency for the internal operations of the Automated Storage and Retrieval System (AS/RS). Eight operating schemes are proposed under the combination of three conditions, namely, the storing method, the layout type, and the sequence of command execution. The moving distance of the stacker crane is calculated using the same gateway data through a simulation based on a C# program. The optimal operating scheme is proposed based on the analyzed simulation results. In conclusion, the combination of conditions of random storage, two-way type warehouse, and dual command execution elicits optimum results in travel efficiency for the stacker crane.

Accelerating Molecular Dynamics Simulation Using Graphics Processing Unit

  • Myung, Hun-Joo;Sakamaki, Ryuji;Oh, Kwang-Jin;Narumi, Tetsu;Yasuoka, Kenji;Lee, Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3639-3643
    • /
    • 2010
  • We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using CUDA-enabled and CPU versions were obtained and compared for a biomolecular system containing 23558 atoms. CUDA-enabled versions were found to be faster than CPU version. This suggests that GPU could be a useful hardware for molecular dynamics simulation.

Tunable Slow Light with Large Bandwidth and Low-dispersion in Photonic Crystal Waveguide Infiltrated with Magnetic Fluids

  • Lei, Weizheng;Pu, Shengli
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.110-113
    • /
    • 2015
  • Two kinds of magnetic fluids with different volume fractions are symmetrically filled into the W0.9 photonic crystal waveguide structure. The 2D plane-wave expansion method is used to investigate the slow light properties numerically. The constant group index criterion is employed to evaluate the slow light performance. The wavelength bandwidth ${\Delta}{\lambda}$ centering at ${\lambda}_0=1550nm$ varies from 32.4 to 44.2 nm when the magnetic field factor ${\alpha}_{\parallel}$ changes from 0 to 1. And the corresponding normalized delay bandwidth product can be tuned from 0.221 to 0.258. For comparison and optimization, two infiltration cases are investigated and the more advantageous infiltration scheme is found.

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

An Enhanced Searching Algorithm over Unstructured Mobile P2P Overlay Networks

  • Shah, Babar;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.173-178
    • /
    • 2013
  • To discover objects of interest in unstructured peer-to-peer networks, the peers rely on flooding query messages which create incredible network traffic. This article evaluates the performance of an unstructured Gnutella-like protocol over mobile ad-hoc networks and proposes modifications to improve its performance. This paper offers an enhanced mechanism for an unstructured Gnutella-like network with improved peer features to better meet the mobility requirement of ad-hoc networks. The proposed system introduces a novel caching optimization technique and enhanced ultrapeer selection scheme to make communication more efficient between peers and ultrapeers. The paper also describes an enhanced query mechanism for efficient searching by applying multiple walker random walks with a jump and replication technique. According to the simulation results, the proposed system yields better performance than Gnutella, XL-Gnutella, and random walk in terms of the query success rate, query response time, network load, and overhead.

Assessment of Total Transfer Capability for Congestion Management using Linear Programming (선형계획기반 선로혼잡처리에 대한 총송전용량 평가)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.447-452
    • /
    • 2006
  • This paper presents a scheme to solve the congestion problem with phase-shifting transformer(PST) controls and power generation controls using linear programming method. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. Linear programming method is used to maximize power flow of tie line subject to security constraints such as voltage magnitude and real power flow in interconnected systems. The results are compared with that of repeat power flow(RPF) and sequential quadratic programming(SQP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

Isolated Topologies of Switched-Resonator Converters

  • Jabbari, Masoud;Farzanehfard, Hosein;Shahgholian, Ghazanfar
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • Switched-resonator converters are a new family of soft switching DC-DC converters where the energy is transferred via a resonator. This paper introduces some isolated topologies of this family. The achieved advantages include, load independent soft-switching, self short-circuit protection, and optimization capability due to topology variety. Compared to conventional series-resonant converters, outstanding advantages such as a smaller fewer number of switches and diodes, a smaller transformer, and lower current stresses are achieved. A general synthesis scheme, functional topologies, and essential relations are included. Experimental results from a laboratory prototype confirm the presented theoretical analysis.

Artificial Landmark based Pose-Graph SLAM for AGVs in Factory Environments (공장환경에서 AGV를 위한 인공표식 기반의 포즈그래프 SLAM)

  • Heo, Hwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • This paper proposes a pose-graph based SLAM method using an upward-looking camera and artificial landmarks for AGVs in factory environments. The proposed method provides a way to acquire the camera extrinsic matrix and improves the accuracy of feature observation using a low-cost camera. SLAM is conducted by optimizing AGV's explored path using the artificial landmarks installed on the ceiling at various locations. As the AGV explores, the pose nodes are added based on the certain distance from odometry and the landmark nodes are registered when AGV recognizes the fiducial marks. As a result of the proposed scheme, a graph network is created and optimized through a G2O optimization tool so that the accumulated error due to the slip is minimized. The experiment shows that the proposed method is robust for SLAM in real factory environments.