DOI QR코드

DOI QR Code

Accelerating Molecular Dynamics Simulation Using Graphics Processing Unit

  • Received : 2010.07.16
  • Accepted : 2019.10.06
  • Published : 2010.12.20

Abstract

We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using CUDA-enabled and CPU versions were obtained and compared for a biomolecular system containing 23558 atoms. CUDA-enabled versions were found to be faster than CPU version. This suggests that GPU could be a useful hardware for molecular dynamics simulation.

Keywords

References

  1. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, 1987.
  2. Smit, B.; Frenkel, D. Understanding Molecular Simulation; Academic Press: Orlando, 2001.
  3. Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay, S.; Klein, M. L. J. Phys. Chem. B 2001, 105, 4464. https://doi.org/10.1021/jp010238p
  4. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. https://doi.org/10.1063/1.470117
  5. Martyna, G. J.; Tuckerman, M. E.; Tobias, D. J.; Klein, M. L. Mol. Phys. 1996, 87, 1117. https://doi.org/10.1080/00268979600100761
  6. Minary, P.; Tuckerman, M. E.; Martyna, G. J. Phys. Rev. Lett. 2004, 93, 150201. https://doi.org/10.1103/PhysRevLett.93.150201
  7. Plimpton, S. J. Comp. Phys. 1995, 117, 1. https://doi.org/10.1006/jcph.1995.1039
  8. Oh, K. J.; Deng, Y. Comp. Phys. Comm. 2007, 177, 426. https://doi.org/10.1016/j.cpc.2007.05.005
  9. Oh, K. J.; Klein, M. L. Comp. Phys. Comm. 2006, 174, 263. https://doi.org/10.1016/j.cpc.2005.10.011
  10. Moore, G. E. Electronics Magazine 1965, 38, 4.
  11. http://www.top500.org.
  12. Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comp. Phys. 2008, 227, 5342. https://doi.org/10.1016/j.jcp.2008.01.047
  13. Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.; Trabuco, L. G.; Schulten, K. J. Comp. Chem. 2007, 28, 2618. https://doi.org/10.1002/jcc.20829
  14. Yang, J.; Wang, Y.; Chen, Y. J. Comp. Phys. 2007, 221, 799. https://doi.org/10.1016/j.jcp.2006.06.039
  15. van Meel, J. A.; Arnold, A.; Frenkel, D.; Portegies Zwart, S. F.; Belleman, R. G. Mol. Sim. 2008, 34, 259. https://doi.org/10.1080/08927020701744295
  16. Hardy, D. J.; Stone, J. E.; Schulten, K. Parallel Computing 2009, 35, 164. https://doi.org/10.1016/j.parco.2008.12.005
  17. Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W. Comp. Phys. Comm. 2008, 179, 634. https://doi.org/10.1016/j.cpc.2008.05.008
  18. Taufer, M.; Saponaro, P.; Padron, O.; Patel, S. Improving Numerical Reproducibility and Stability in Large-Scale Numerical Simulations on GPUs; 24th IEEE International Parallel and Distributed Processing Symposium, 2009.
  19. Friedrichs, M. S.; Eastman, P.; Vaidyanathan, V.; Houston, M.; Legrand, S.; Beberg, A. L.; Ensign, D. L.; Bruns, C. M.; Pande, V. S. J. Comp. Chem. 2009, 30, 864. https://doi.org/10.1002/jcc.21209
  20. Oh, K. J.; Klen, M. L. Comp. Phys. Comm. 2006, 174, 560. https://doi.org/10.1016/j.cpc.2005.12.002
  21. http://www.nvidia.com.
  22. Smith, W. Comp. Phys. Comm. 1991, 62, 229. https://doi.org/10.1016/0010-4655(91)90097-5
  23. MacKerell, A., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher W. E., III.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586. https://doi.org/10.1021/jp973084f
  24. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. https://doi.org/10.1063/1.445869
  25. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comp. Phys. 1977, 23, 327. https://doi.org/10.1016/0021-9991(77)90098-5
  26. Andersen, H. C. J. Comp. Phys. 1983, 52, 24. https://doi.org/10.1016/0021-9991(83)90014-1
  27. Narumi, T.; Kameoka, S.; Taiji, M.; Yasuoka, K. SIAM J. Sci. Comp. 2008, 30, 3108. https://doi.org/10.1137/070692054
  28. Narumi, T.; Hamada, T.; Nitadori, K.; Sakamaki, R.; Kameoka, S.; Yasuoka, K. High-Performance Quasi Double-Precision Method using Single-Precision Hardware for Molecular Dynamics Simulations with GPUs; 10th International Conference on High Performance Computing in Asia-Pacific Region, 2009.

Cited by

  1. Docking small ligands to molecule of the plant FtsZ protein: Application of the CUDA technology for faster computations vol.46, pp.3, 2010, https://doi.org/10.3103/s0095452712030048
  2. Classical molecular dynamics on graphics processing unit architectures vol.10, pp.2, 2010, https://doi.org/10.1002/wcms.1444