• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.029 seconds

Optimal Design of Direct-Driven Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS) (DEAS를 이용한 직접구동형 풍력발전기 최적설계)

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Kim, Eun-Su;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.24-33
    • /
    • 2008
  • Optimal design of the direct-driven PM Wind Generator, combined with DEAS(Dynamic Encoding Algorithm for Searches) and FEM(Finite Element Method), has been proposed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, DEAS contributes to reducing the excessive computing time for the optimization process.

Design and fabrication of the X-band microwave amplifier for Electronic Radar Reflector (전자식 레이더 반사기를 위한 X-band 마이크로웨이브 증폭기 설계 및 구현)

  • 정종혁;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 1998
  • In this paper, we designed and fabricated 5-stage microwave solid state power amplifier using balanced amplifier scheme for X-band electronic radar reflector. The used substrate is FR4 and the used active devices are FHX35LC, FLK012WF and FLK022WG. The circuit design and optimization had been carried out through the microwave CAD program CNL2 The measured values show 46dB in gain, input return loss -14.2dB, output return loss -16.6dB and IM3 is 32dBc at designed bandwidth. The measured results are almost agreed with the simulated values.

  • PDF

Space-Stretch Tradeoff Optimization for Routing in Internet-Like Graphs

  • Tang, Mingdong;Zhang, Guoqiang;Liu, Jianxun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.546-553
    • /
    • 2012
  • Compact routing intends to achieve good tradeoff between the routing path length and the memory overhead, and is recently considered as a main alternative to overcome the fundamental scaling problems of the Internet routing system. Plenty of studies have been conducted on compact routing, and quite a few universal compact routing schemes have been designed for arbitrary network topologies. However, it is generally believed that specialized compact routing schemes for peculiar network topologies can have better performance than universal ones. Studies on complex networks have uncovered that most real-world networks exhibit power-law degree distributions, i.e., a few nodes have very high degrees while many other nodes have low degrees. High-degree nodes play the crucial role of hubs in communication and inter-networking. Based on this fact, we propose two highest-degree landmark based compact routing schemes, namely HDLR and $HDLR^+$. Theoretical analysis on random power-law graphs shows that the two schemes can achieve better space-stretch trade-offs than previous compact routing schemes. Simulations conducted on random power-law graphs and real-world AS-level Internet graph validate the effectiveness of our schemes.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.

Implementation and Evaluation of Time Interval Partitioning Algorithm in Temporal Databases (시간 데이타베이스에서 시간 간격 분할 알고리즘의 구현 및 평가)

  • Lee, Kwang-Kyu;Shin, Ye-Ho;Ryu, Keun-Ho;Kim, Hong-Gi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • Join operation exert a great effect on the performance of system in temporal database as in the relational database. Especially, as for the temporal join, the optimization of interval partition decides the performance of query processing. In this paper, to improve the efficiency of parallel join query in temporal database. I proposed Minimum Interval Partition(MIP) scheme that time interval partitioning. The validity of this MIP algorithm that decides minimum breakpoint of the partition is proved by example scenario and I confirmed improved efficiency as compared with existing partition algorithm.

Optimization of pipeline Operation for Stable Landfill Gas Collection Using Numerical Analysis (안정적 매립가스 포집을 위한 배관망 최적운용 분석)

  • 김인기;김세준;허대기;김현태;성원모;배위섭
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • It is important that the gas collected from wells completed in waste landfill should be continuously and stably transported to pre-treatment stage through pipelines. The transport is generally affected by fluid flow characteristics of landfill, gas reserves, leachate moisture holdup in pipeline, structures and dimensions of pipeline network, etc. This paper analyzes the pipeline transport and collection mechanism for gas generated in a durable waste landfill. From the results, the optimal controlled scheme of blower inlet pressure is proposed for the prevention of trapped gas pocket zones.

  • PDF

Video Quality Variation Minimizing for Real-Time Low Bit Rate Video (영상품질 변화를 최소화하는 실시간 저전송률 영상코딩)

  • Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.868-874
    • /
    • 2007
  • A real-time frame-layer rate control algorithm with a token bucket traffic shaper is proposed for minimizing video duality variation. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reduce the quality fluctuation, we use a sliding window scheme which does not require the pre-analysis process. Therefore, the proposed algorithm does not produce the delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.306-317
    • /
    • 2021
  • The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.

Unstructured Data Quantification Scheme Based on Text Mining for User Feedback Extraction (사용자 의견 추출을 위한 텍스트 마이닝 기반 비정형 데이터 정량화 방안)

  • Jo, Jung-Heum;Chung, Yong-Taek;Choi, Seong-Wook;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.131-137
    • /
    • 2018
  • People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.

Simulation and design of individual neutron dosimeter and optimization of energy response using an array of semiconductor sensors

  • Noushinmehr, R.;Moussavi zarandi, A.;Hassanzadeh, M.;Payervand, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.293-302
    • /
    • 2019
  • Many researches have been done to develop and improve the performance of personal (individual) dosimeter response to cover a wide of neutron energy range (from thermal to fast). Depending on the individual category of the dosimeter, the semiconductor sensor has been used to simplify and lightweight. In this plan, it's very important to have a fairly accurate counting of doses rate in different energies. With a general design and single-sensor simulations, all optimal thicknesses have been extracted. The performance of the simulation scheme has been compared with the commercial and laboratory samples in the world. Due to the deviation of all dosimeters with a flat energy response, in this paper, has been used an idea of one semi-conductor sensor to have the flat energy-response in the entire neutron energy range. Finally, by analyzing of the sensors data as arrays for the first time, we have reached a nearly flat and acceptable energy-response. Also a comparison has been made between Lucite-PMMA ($H_5C_5O_2$) and polyethylene-PE ($CH_2$) as a radiator and $B_4C$ has been studied as absorbent. Moreover, in this paper, the effect of gamma dose in the dosimeter has been investigated and shown around the standard has not been exceeded.