• Title/Summary/Keyword: optimization problem

Search Result 4,333, Processing Time 0.03 seconds

Cooperative Coevolution Differential Evolution Based on Spark for Large-Scale Optimization Problems

  • Tan, Xujie;Lee, Hyun-Ae;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Differential evolution is an efficient algorithm for solving continuous optimization problems. However, its performance deteriorates rapidly, and the runtime increases exponentially when differential evolution is applied for solving large-scale optimization problems. Hence, a novel cooperative coevolution differential evolution based on Spark (known as SparkDECC) is proposed. The divide-and-conquer strategy is used in SparkDECC. First, the large-scale problem is decomposed into several low-dimensional subproblems using the random grouping strategy. Subsequently, each subproblem can be addressed in a parallel manner by exploiting the parallel computation capability of the resilient distributed datasets model in Spark. Finally, the optimal solution of the entire problem is obtained using the cooperation mechanism. The experimental results on 13 high-benchmark functions show that the new algorithm performs well in terms of speedup and scalability. The effectiveness and applicability of the proposed algorithm are verified.

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software (동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구)

  • Kim, Jung Soo;Jeon, Bo Hyun;Chung, Young Woo;Kim, Boo Yoon;Lee, Yan
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

Optimal Design of Location Management Using Particle Swarm Optimization (파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계)

  • Byeon, Ji-Hwan;Kim, Sung-Soo;Jang, Si-Hwan;Kim, Yeon-Soo
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

A Symbiotic Evolutionary Algorithm for Multi-objective Optimization (다목적 최적화를 위한 공생 진화알고리듬)

  • Shin, Kyoung-Seok;Kim, Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.77-91
    • /
    • 2007
  • In this paper, we present a symbiotic evolutionary algorithm for multi-objective optimization. The goal in multi-objective evolutionary algorithms (MOEAs) is to find a set of well-distributed solutions close to the true Pareto optimal solutions. Most of the existing MOEAs operate one population that consists of individuals representing the entire solution to the problem. The proposed algorithm has a two-leveled structure. The structure is intended to improve the capability of searching diverse and food solutions. At the lower level there exist several populations, each of which represents a partial solution to the entire problem, and at the upper level there is one population whose individuals represent the entire solutions to the problem. The parallel search with partial solutions at the lower level and the Integrated search with entire solutions at the upper level are carried out simultaneously. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The optimization problems with continuous variables and discrete variables are used as test-bed problems. The experimental results confirm the effectiveness of the proposed algorithm.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Design Optimization of Deep Groove Ball Bearing with Discrete Variables for High-Load Capacity (이산 설계변수를 포함하고 있는 깊은 홈 볼 베어링의 고부하용량 설계)

  • Yun, Gi-Chan;Jo, Yeong-Seok;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1940-1948
    • /
    • 2000
  • A design method for maximizing fatigue life of the deep groove ball bearing without enlarging mounting space is proposed by using a genetic algorithm. The use of gradient-based optimization methods for the design of the bearing is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. Constrains for manufacturing are applied in optimization scheme. Results obtained for several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increased about 9-34% compared with the standard ones.

Optimization of Job-Shop Schedule Considering Deadlock Avoidance (교착 회피를 고려한 Job-Shop 일정의 최적화)

  • Jeong, Dong-Jun;Lee, Du-Yong;Im, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2131-2142
    • /
    • 2000
  • As recent production facilities are usually operated with unmanned material-handling system, the development of an efficient schedule with deadlock avoidance becomes a critical problem. Related researches on deadlock avoidance usually focus on real-time control of manufacturing system using deadlock avoidance policy. But little off-line optimization of deadlock-free schedule has been reported. This paper presents an optimization method for deadlock-free scheduling for Job-Shop system with no buffer. The deadlock-free schedule is acquired by the procedure that generates candidate lists of waiting operations, and applies a deadlock avoidance policy. To verify the proposed approach, simulation resultsare presented for minimizing makespan in three problem types. According to the simulation results the effect of each deadlock avoidance policy is dependent on the type of problem. When the proposed LOEM (Last Operation Exclusion Method) is employed, computing time for optimization as well as makespan is reduced.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.