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Abstract

Differential evolution is an efficient algorithm for solving continuous optimization problems. However, its performance
deteriorates rapidly, and the runtime increases exponentially when differential evolution is applied for solving large-scale
optimization problems. Hence, a novel cooperative coevolution differential evolution based on Spark (known as SparkDECC) is
proposed. The divide-and-conquer strategy is used in SparkDECC. First, the large-scale problem is decomposed into several
low-dimensional subproblems using the random grouping strategy. Subsequently, each subproblem can be addressed in a
parallel manner by exploiting the parallel computation capability of the resilient distributed datasets model in Spark. Finally, the
optimal solution of the entire problem is obtained using the cooperation mechanism. The experimental results on 13 high-
benchmark functions show that the new algorithm performs well in terms of speedup and scalability. The effectiveness and
applicability of the proposed algorithm are verified.

Index Terms: Cooperative coevolution, Differential evolution, Large-scale optimization, Resilient distributed datasets

I. INTRODUCTION

The differential evolution(DE) algorithm is a global opti-
mization algorithm based on real coding [1]. Owing to its
simplicity, efficiency, and global parallelism, the DE algo-
rithm has been successfully applied in industrial design and
engineering optimization fields in recent years; additionally,
researchers have improved and innovated the DE algorithm
and achieved some achievements. For example, Brest et al.
[2] constructed an adaptive method for the control parame-
ters and proposed an adaptive DE algorithm (jDE). Wang et
al. proposed a compound DE algorithm (CoDE) [3], which
randomly combines three selected mutation strategies and
three groups of control parameters. These studies are primar-
ily focused on low-dimensional problems (30 dimensions).
However, when addressing high-dimensional problems (1000

dimensions), the performances of these DE algorithms will
deteriorate significantly, and the search time increases expo-
nentially with the dimension; as such, the problems are
extremely difficult to solve and dimensionality issues persist
[4].

To solve the high-dimensional optimization problem effec-
tively, scholars have proposed different strategies, among
which the representative one is cooperative co-evolution
(CC) [5]; CC adopts the divide-and-conquer concept. First,
the high-dimensional complex problem is decomposed into
simple low-dimensional subproblems. Second, each subprob-
lem is solved separately. Finally, using all child synergy
mechanisms, the solution for the entire issue is obtained. The
random grouping strategy proposed by Yang et al. [6] allows
two related variables to be categorized under the same group
with a high probability of obtaining more accurate solutions
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in large-scale optimization problems. Researchers have
applied CC to many fields, such as large-scale black-box
optimization problems [7], SCA(strategic conflict avoidance)
[8], FII (fast interdependency identification) [9], CCPSO
(cooperative coevolving particle swarm optimization) [10],
and DG2 (differential grouping 2) [11]. However, to solve
high-dimensional optimization problems, they adopted a
serial method, which requires a long computation time and
does not readily provide satisfactory solutions within a rea-
sonable time frame. In recent years, cloud computing has
been successfully applied to the field of large-scale informa-
tion processing, such as machine learning [12], ant colony
algorithm [13], CRFS (Conditional Random Fields) [14],
differential evolution algorithm [15, 16], graph data analysis
[17], and classification algorithms [18].

Researchers have proposed distributed differential evolu-
tion algorithms based on the MapReduce model of Google’s
open-source platform, Hadoop [19, 20]. It was discovered
that the MapReduce model is a general batch computing
model that lacks an effective mechanism for parallel comput-
ing data sharing and cannot provide effective support for itera-
tive computing. Therefore, the differential evolution algorithm
based on the MapReduce model necessitates data exchange
through frequent file reading and writing, which reduces its
efficiency [21].

The spark cloud platform is a distributed data processing
framework proposed by researchers at Berkeley University
[22] and has been successfully applied in many fields. A
new data abstraction model based on Spark, i.e., the resilient
distributed dataset (RDD), was developed, and it effectively
supported iterative computation relational queries. Because
the RDD model is based on in-memory computing, it avoids
the disadvantages of the MapReduce model, which is less
efficient as it frequently reads and writes disk data.

Based on the Spark cloud platform, a cooperative differen-
tial evolution algorithm, the SparkDECC (Spark cloud plat-
form based cooperative differential evolution) algorithm, is
proposed herein. It adopts the divide-and-conquer strategy,
decomposes a high-dimensional optimization problem into
low-dimensional subproblems using the random grouping
strategy, and encapsulates the problems into an RDD. In
RDD, each subproblem evolves independently and in paral-
lel for several generations. All subproblems are combined
into complete problems using the synergistic mechanism and
the optimal individual. In this study, the SparkDECC algo-
rithm was evaluated using 13 standard functions. The experi-
mental results show that the proposed algorithm is effective
and feasible.

The remainder of this paper is organized as follows: Sec-
tion II introduces the DE. Our proposed DE algorithm, namely
SparkDECC, is presented in detail in Section III. Section IV
provides the experimental results. Section V presents the
conclusions and future work.

II. DE

DE is used to solve the global optimization problem based
on real coding. The objective function is expressed as fol-
lows [23]:

Minimize f(x)
s.t. x = (x1, x2, …, xD), 

D indicates the dimension; min and max are the ranges of
the solution space.

The population x is propagated randomly as follows:

xi,j = min + rnd (max − min), (1)

where rnd ∈ [0, 1] is a random number.
After the population is initialized by formula (1), the pop-

ulation promotes generations via the following three proce-
dures.

A. Mutation

At G generations, the mutant vector vi can be produced as
follows: 

, (2)

where i = 1, 2, …, NP; r1, r2, and r3 ∈ [1, NP] are random
different integers. The control parameter Fi ∈ [0, 1]. 

B. Crossover

After mutation, a crossover is performed on xi and vi to
generate ui. The binomial crossover is defined as follows:

, (3)

where j = 1, 2, · · · , D, rnd ∈ [0, 1], jrnd ∈ [1, D], the condi-
tion j = jrnd ensures that the vector u receives at least one
variable from v, and CR ∈ [0, 1].

C. Selection

Finally, the best vector survives in the next generation by
comparing the value of the function. The greedy selection
scheme is described as follows:

, (4)

where f (.) is a function.
The DE algorithm repeatedly performs the three-step gen-

eration until a termination criterion is satisfied.

[min,max]ix 

1 xr1
Fi xr2

 xr3
 +=

 

 

https://doi.org/10.6109/jicce.2021.19.3.155 156



Cooperative Coevolution Differential Evolution Based on Spark for Large-Scale Optimization Problems
III. SparkDECC

A. Spark

To support iterative computing more efficiently, the Spark
platform extends the MapReduce cloud model [24]. The
Spark platform provides two important abstractions: RDD
and accumulators. RDD is a fault-tolerant parallel data struc-
ture that provides a read-only partitioned set of records that
coexist in memory. Broadcast is a shared variable that caches
data to each node, eliminating the necessity for data transfer,
thereby reducing communication overhead and improving
communication performance. The Spark API provides two
types of operations for the RDD, namely transformations and
actions. In transformations, the same activity is performed for
each data partition, and a new RDD is returned. The action
operator triggers the operation on the RDD and returns the
value to the master control node. The internal implementa-
tion mechanism of the RDD is based on the iterator, which
renders the data access more efficient, avoids the memory
consumption of the intermediate results, and results in a
more efficient and fast iterative calculation.

DE is a population-based evolutionary algorithm with
inherent parallelism. Therefore, DE can fully integrate the
parallelism of Spark. Spark initializes the population paral-
lelized in the master control node via parallelization and
stores it in memory via the key-value method, i.e.,

,

where m is the number of subpopulations, keyi is an integer
that represents the number of the ith subpopulation, and val-
uei is the value of the specific implementation of the ith sub-
population of DE on Spark, as shown in Fig. 1.

Spark abstracts the data in memory into the RDD using
key–value pairs, preserves subpopulations in different nodes
based on the value of keyi, uses the parallel operator of the
RDD to evolve several generations of each subpopulation in
parallel, and then generates a new population by merging
with the operator’s collection. At the end of the cycle, the
optimal value of the entire population is obtained through
action operator reduction.

B. SparkDECC

CC frameworks can effectively address large-scale optimi-
zation problems. However, as the population size increases,
the time required by the CC framework increases rapidly. To
improve the convergence speed of the CC framework, the
advantages of cloud computing are combined with the CC
framework, and a CC algorithm based on SparkDECC is pro-
posed.

The SparkDECC algorithm first decomposes a high-dimensional

problem into several low-dimensional subproblems via the
random grouping method, where one subproblem corresponds
to a subpopulation, and the position information of each
subproblem in the entire problem is preserved. Based on the
keyi value, the low-dimensional subpopulations are distributed
to the corresponding partitions in the RDD, and the sub-
populations in each partition execute the mutation and cross
selection of the DE algorithm in parallel. When calculating the
individual fitness value of the subpopulations, the optimal
individuals of the final round are selected to form a complete
population and perform a local optimization. After several
generations of evolution in the corresponding partition, the
low-dimensional subpopulation is merged into a new complete
population based on its location information; the flow chart of
the SparkDECC algorithm for returning the optimal individual
through a global search is shown in Fig. 2. 

[ , ], 1, 2, ,i ikey value i m L

Fig. 2. Flowchart of SparkDECC algorithm

Fig. 1. DE Based On Spark.
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IV. EXPERIMENTAL STUDY

A. Benchmark Functions and Experimental Setting

To test the performance of the SparkDECC algorithm for
solving large-scale optimization problems, we performed
experiments using 13 test functions selected from the litera-
ture [25]. Among them, f1~f8 are unimodal functions, f9~f13

are multimodal functions, f4 and f5 are non-decomposable
functions, and all other functions are decomposable. 

The spark cloud model was used in this experiment. The
configuration of each node was as follows: 64-bit Core-i7
CPU, 3.4 Hz main frequency, 8 G memory, Ubuntu 13.10 oper-
ating system, Hadoop 2.2.0, Spark 1.2.0, IntelliJIdea 14.1.2
programming environment, and languages Scala and Java.

To verify the performance of SparkDECC and the factors
that affect its performance, the dimension of the problem in
SparkDECC was set to 1000, the dimension of the subprob-
lem was set to 100, the problem size NP = 100, F = 0.5, Cr
= 0.9, and the algebra of independent operations of each sub-
population was 100. The scalability of the SparkDECC algo-
rithm was verified while the other parameters remained
unchanged.

B. Experimental results and comparisons with other 
DE variants

Table 1 shows a comparison between SparkDECC and
OXDE [26], CoDE, jDE, and PSO [27] in terms of the aver-
age optimal value and standard variance. The parameter set-
tings of the five algorithms were consistent, and each
algorithm was performed 25 times independently. The Wil-
coxon rank-sum test was used to analyze the experimental

results of the four algorithms. The significance level was
0.05, where −, +, and ≈ represent inferior, superior, and
equal, respectively.

Table 1 shows a comparison between SparkDECC and
each of three other DE algorithms. The results show that
SparkDECC can converge rapidly to the optimal result for
seven functions, namely f1, f5, f6, f10, f11, f12, and f13, and the
experimental data are superior to those of the other three
algorithms. The convergence of the SparkDECC algorithm in
f3, f8, and f9 is stagnant, and the experimental results are
inferior to those of the other algorithms. The performance of
each algorithm is similar for the non-decomposable function
f4. The results of f2 for jDE is inferior and superior to those
of OXDE and CODE, respectively. The experimental results
of f7 with a noise function were inferior to those of CoDE,
superior to jDE, and comparable to OXDE.

The acceleration ratio [20] is an effective index for mea-
suring the parallelism of the algorithm; it is expressed as
shown in Eq. (5).

, (5)

where Tk(1) represents the average time of k independent
runs on a partition, and Tk(Mn) represents the average time
of k independent runs for n partitions. In the experiment, f1
and f3 were selected for the unimodal functions, and f9 and
f11 were selected for the multimodal functions. According to
the four high-dimensional optimization functions, three dif-
ferent evaluation times, namely 5E6, 2.5E6, and 5E5, were
set, which were independently executed 10 times. The accel-
eration ratio in Fig. 3 shows that when testing the high-
dimensional optimization function of the SparkDECC algo-
rithm, as the number of partitions increased, the execution

(1)
( )

( )
k

k n
k n

T
S M

T M


Table 1. Comparison of SparkDE, OXDE, CoDE, jDE, and PSO algorithms for solving results

F
OXDE CoDE jDE PSO SparkDECC

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 4.76E+02 1.67E+02 1.50-05 1.74E-05 2.46E-06 1.23E-05 2.30E+06 2.79E+04 5.85E-13 1.62E-13

f2 5.27E+01 6.89E+00 8.89E-01 9.74E-01 1.74E-10 8.62E-10 7.16E+04 3.30E+04 6.60E-07 1.00E-07

f3 1.54E+06 2.33E+05 4.50E+04 6.12E+03 7.54E+04 1.48E+04 8.68E+08 6.51E+07 5.31E+07 7.20E+06

f4 2.59E+01 1.84E+00 2.67E+01 1.95E+00 5.04E+01 4.58E+00 4.01E+02 7.98E+00 9.76E+01 2.22E-01

f5 2.28E+04 7.08E+03 2.39E+03 2.12E+02 2.18E+03 2.21E+02 9.23E+12 1.29E+12 1.62E+03 1.62E+02

f6 7.86E+03 8.86E+02 5.26E+01 6.26E+01 1.06E+04 2.98E+03 2.30E+06 1.29E+05 1.60E-01 4.73E-01

f7 5.68E+00 7.25E-01 9.06E-01 1.03E-01 2.91E+01 1.60E+01 3.48E+13 3.87E+12 3.62E+00 1.67E-01

f8 -4.17E+05 7.27E+02 -1.89E+05 5.14E+03 -4.19E+05 3.18E-01 -1.34E+05 4.51E+03 -6.11E+04 1.18E+03

f9 4.94E+02 5.32E+01 4.59E+03 2.10E+02 2.98E+00 4.03E+00 2.33E+06 1.35E+05 1.10E+04 3.93E+01

f10 6.49E+00 2.79E-01 2.25E+00 1.82E-01 5.12E+00 7.06E-01 2.15E+01 3.77E-02 4.55E-08 8.16E-09

F11 5.02E+00 1.19E+00 7.70E-03 2.29E-02 8.91E-01 7.39E-001 5.75E+02 4.15E+01 3.54E-14 1.03E-14

f12 3.01E+00 7.11E-11 5.75E-02 4.85E-02 1.32E+06 2.20E+06 6.99E+12 7.75E+11 7.46E-04 2.58E-03

f13 1.94E+03 3.40E+02 1.15E+02 7.53E+01 1.14E+07 8.17E+06 7.87E+12 8.78E+11 8.79E-04 3.04E-03

−/+/ ≈ 8/3/2 7/4/2 7/4/2 12/1/0
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time of the algorithm gradually decreased, and the accelera-
tion effect improved. When the number of partitions was
increased to five, the acceleration ratio was approximately
five, which is consistent with the analysis of time complex-
ity provided in Section 3.2. In addition, the relationship
between the acceleration curve of the function and the evalu-
ation times of the function was not clear, which indicates
that the acceleration performance was stable.

V. CONCLUSIONS

In this study, a new collaborative cloud differential evolu-
tion algorithm (SparkDECC) based on Spark was developed
using a new iterative cloud computing model. The Spark-
DECC algorithm decomposes a high-dimensional problem
into multiple low-dimensional subproblems of the same
dimension via the random grouping strategy, and each sub-
problem corresponds one-to-one with the partitions in the
RDD model. Each subproblem executes the DE algorithm in
parallel. After the subproblems have evolved independently
for several generations, the optimal individuals are updated
to improve the diversity of the population. SparkDECC was
implemented on the Spark cloud model using Scala lan-

guage. Based on a comparison involving 13 standard test
functions, the results showed that SparkDECC exhibited
high accuracy, high speed, and good scalability. The experi-
mental results showed that the acceleration ratio exhibited an
almost linear relationship with the number of partitions, indi-
cating a favorable acceleration effect. 

In future studies, new grouping strategies based on Spark-
DECC will be investigated, and synergistic mechanism of
stragegies will be improved continuously to improve the
convergence efficiency and solution precision of the algo-
rithm.
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