• Title/Summary/Keyword: optimization of the enzyme production

Search Result 135, Processing Time 0.02 seconds

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

Saccharification of Uncooked Starch (무증자 전분의 당화에 관한 연구)

  • Lee, S.Y.;Shin, Y.C.;Lee, S.H.;Park, S.S.;Kim, H.S.;Byun, S.M.
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.463-471
    • /
    • 1984
  • For the eventual alcohol production from uncooked starch, an efficient saccharification process was examined by using the combined action of steeping, pectin depolymerase, ${\alpha}-amylase$ and glucoamylase. The total sugar content of rice, sweet potato and tapioka used were 4.53, 4.26, and 3.92 mmole/g sample. $70\;{\pm}\;10%$ of the total sugar was hydrolyzed when cooked starch was saccharified under the condition which is currently used in industry. The smaller starch particle was used, the more saccharification was obtained. Efficient saccharification was obtained by treatment with 5% $H_2SO_4$ (sample: working volume = 1:2) at $60^{\circ}C$ for 12 hr. Optimization was carried out for the saccharification of uncooked starch by the combined action of pectin depolymerase, ${\alpha}-amylase$, and glucoamylase. The conditions are: pectin depolymerase; pH 4.5, $45^{\circ}C$, 2 hr, ${\alpha}-amylase$; pH 6.0, $60^{\circ}C$, 1 hr, and glucoamylase; pH 3.5, $60^{\circ}C$, 1 hr. Simultaneous treatment of the combined action of macerating, liquifying and saccharifying enzymes yielded better result than stepwise treatment of 3 enzymes. Degrees of saccharification of uncooked tapioka, rice and sweet potato were 82, 90.5, and 84.5%, respectively on the basis of total sugar, under the optimized conditions.

  • PDF

Enzymatic Hydrolysis Optimization of a Snow Crab Processing By-product (홍게 가공부산물의 효소적 단백질 가수분해 최적화)

  • Jang, Jong-Tae;Seo, Won-Ho;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.622-627
    • /
    • 2009
  • The objectives of this study were to evaluate a protease suitable for the enzymatic hydrolysis of a snow crab processing by-product (SPB) and to optimize the hydrolysis conditions using response surface methodology (RSM). The SPB was hydrolyzed at $50^{\circ}C$ and pH 7.0-7.2 to obtain various degree of hydrolysis (DH) using Flavourzyme at an enzyme/substrate (E/S) ratio of 3.0%. The reaction progress curve exhibited an initial fast reaction rate followed by a slowing of the rate. The DH was increased to 30% at 90 min with a final DH 32 to 36%. A central composite experimental design having three independent variables (reaction temperature, reaction time, and E/S ratio) with five levels was used to optimize the enzymatic hydrolysis conditions. Based on the DH data, the optimum reaction conditions for the enzymatic hydrolysis of the SPB were a temperature of $51.8^{\circ}C$, reaction time of 4 hr 45 min, and an E/S ratio of 3.8%. It was demonstrated that the enzymatic hydrolysate of SPB could be used as a flavoring agent or a source of precursors for the production of reaction flavors.

Isolation of the Protease-producing Yeast Pichia anomala CO-1 and Characterization of Its Extracellular Neutral Protease (세포 외 중성 단백질분해효소를 생산하는 Pichia anomala CO-1의 분리 동정 및 효소 특성)

  • Kim, Ji Yeon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1126-1135
    • /
    • 2019
  • From a sample of bamboo byproduct, the protease-producing yeast strain CO-1 was newly isolated. Strain CO-1 is spherical to ovoid in shape and measures $3.1-4.0{\times}3.8-4.4{\mu}m$. For the growth of strain CO-1, the optimal temperature and initial pH were $30^{\circ}C$ and 4.0, respectively. The strain was able to grow in 0.0-15.0%(w/v) NaCl and 0.0-9.0%(v/v) ethanol. Based on a phylogenetic analysis of its 18S rDNA sequences, strain CO-1 was identified as Pichia anomala. The extracellular protease produced by P. anomala CO-1 was partially purified by ammonium sulfate precipitation, which resulted in a 14.6-fold purification and a yield of 7.2%. The molecular mass of the protease was recorded as approximately 30 kDa via zymogram. The protease activity reached its maximum when 1.0%(w/v) CMC was used as the carbon source, 1.0%(w/v) yeast extract was used as the nitrogen source, and 0.3%(w/v) $MnSO_4$ was used as the mineral source. The protease revealed the highest activity at pH 7.0 and $30^{\circ}C$. This enzyme maintained more than 75% of its stability at a pH range of 4.0-10.0. After heating at $65^{\circ}C$ for 1 hr, the neutral protease registered at 60% of its original activity. The protease production coincided with growth and attained a maximal level during the post-exponential phase.

Production of Monoclonal Antibodies against Vibrio parahaemolyticus and Development of High Sensitive Immuno-Selective Filtration Method (Vibrio parahaemolyticus에 대한 단클론성 항체 개발과 고감도 면역선택여과법의 개발)

  • Kim, Jeong-Sook;Choi, Young-Dong;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • The objectives of this study are to produce monoclonal antibodies (MAbs) against Vibrio parahaemolyticus and to develop an immuno-selective filtration (ISF) method for the rapid and sensitive detection of V. parahaemolyticus. The characterization of the MAb produced from HKVP 4H9-9 hybridoma cell was validated by enzyme-linked immunosorbent assay (ELISA) and western blot. The produced MAb was specific to V. parahaemolyticus and showed weak cross-reaction to V. alginolyticus, V. vulnificus and Staphylococcus aureus. After optimization of the method, $5{\times}10^1cell/mL$ of V. parahaemolyticus in a pure culture could be detectable. Although weak cross-reactivity to V. vulnificus, V. alginolyticus and Staphylococcus aureus was observed, the ISF was confirmed to be highly specific to V. parahaemolyticus. Especially, the ISF showed the most sensitivity compared to the immunoassays currently reported is easier to perform and quicker than ID-ELISA.