• Title/Summary/Keyword: optimization of production

Search Result 1,620, Processing Time 0.031 seconds

A Study on the Minimum Production Cost of Welded Built-up Beams (용접 조립보의 최소 생산 비용에 관한 연구)

  • Chang-Doo Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.154-164
    • /
    • 1994
  • In this study, to find an economical production method which yields welded built-up beams with high quality, simulation techniques and optimization method are used. At first, fabrication variables such as welding current, voltage and speed and heated depth and breadth are selected and fabrication cost of a built-up beam is expressed by these parameters, which is optimized under the constraints. As advanced studies, total production cost including the fabrication cost and the material cost of the beam is expressed by the fabrication and design variables, and optimized with the design constraints by the class rules. In addition, assuming that heating for straightening is impossible. the optimization method of multi-objective functions based on the weighting method is applied to obtain the compromised optimal solutions of the total production cost and the welding deformation.

  • PDF

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type I

  • Kim, Su-Nam;Min, Kwan-Ki;Kim, Seung-Hwan;Choi, In-Hwa;Lee, Suhk-Hyung;Pyo, Suhk-Noung;Rhee, Dong-Kwon
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.179-183
    • /
    • 1996
  • Streptoccus Pneumoniae (pneumococcus), the most common cause of bacterial pneumonia, has an ample polysaccharide (PS) capsule that is highly antigenic and is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsulard PS by type 1 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based media were found to support luxuriant growth of pneumococcus type 1 at the same level. Because BHI medium is rather expensive and more complex than the Casitone based media, the Casitone based media was uwed to study optimization of the culture condition. The phase of growth which accomodated maximum PS production was logarithmic phase. Concentrations of glucose greater than 0.2% did not ehnahce growth or PS production. Substitution of netrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium ion) had adverse affects on growth and PS production. On the other hand, low level aeration was beneficial for increased PS production. Addition of 3 mg/1 concentration of methionine, phenylalanine, and threonine were found to enhance growth and PS production. The synerigistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cummulative increase in capsular PS production.

  • PDF

Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology (반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화)

  • Kim, Hyun-do;Im, Young-kum;Choi, Jong-il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.140-144
    • /
    • 2016
  • In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol's solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

Optimization of Hydrogen Production Process using 50 Nm3/h Biogas (50 Nm3/h급 바이오가스 직접 이용 수소 생산 공정 최적화)

  • Gi Hoon Hong;DongKyu Lee;Hyeong Rae Kim;SangYeon Hwang;HyoungWoon Song;SungJun Ahn;SungWon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.44-52
    • /
    • 2024
  • This study presents a novel approach to hydrogen production by biogas from organic waste without CO2 removal. A process model was developed to reduce the costs associated with biogas pretreatment and purification processes. Through optimization of heat exchange networks, the simulation aimed to minimize process costs, maximizing hydrogen production and flue gas temperature. The results reveal that the most efficient process model maximizes the flue gas temperature while following the constraint of the number of heat exchangers. These findings hold promise for contributing to the expansion of "Biogas-to-clean hydrogen" energy conversion technology.

A Stochastic Model for Optimizing Offshore Oil Production Under Uncertainty (불확실성하의 해양석유생산 최적화를 위한 추계적 모형)

  • Ku, Ji-Hye;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.462-468
    • /
    • 2019
  • Offshore oil production faces several difficulties caused by oil price decline and unexpected changes in the global petroleum logistics. This paper suggests a stochastic model for optimizing the offshore oil production under uncertainty. The proposed model incorporates robust optimization and restricted recourse framework, and uses the lower partial mean as the measure of variability of the recourse profit. Some computational experiments and results based on the proposed model using scenario-based data on the crude oil price and demand under uncertainty are examined and presented. This study would be meaningful in decision-making for the offshore oil production problem considering risks under uncertainty.

Optimization of Medium and Fermentation Conditions for Mass Production of Bacillus licheniformis SCD121067 by Statistical Experimental Design (Bacillus licheniformis SCD121067 균체 생산성 증가를 위한 통계적 생산배지 및 발효조건 최적화)

  • Jeong, Yoo-Min;Lee, Ju-Hee;Chung, Hea-Jong;Chun, Gie-Taek;Yun, Soon-Il;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.539-546
    • /
    • 2010
  • In this work, mass production of Bacillus licheniformis SCD121067 through medium optimization by statistical experimental method was studied. First, galactose, yeast extract and potassium phosphate dibasic were selected as carbon, nitrogen and phosphate sources for mass production of B. licheniformis SCD121067 by using one factor at a time method. Second, according to the result of Plackett-Burman experimental design, key factors was yeast extract and $K_2HPO$. Finally, the response surface methodology was performed to obtain the optimum concentrations of two selected variables. The optimized medium composition consisted of 20 g/L galactose, 36 g/L yeast extract, 0.41 g/L $K_2HPO4$, 0.25 g/L $Na_2CO_3$, 0.4g/L $MgSO_4$ and 0.01g/L $CaCl_2$. Dry cell weight (15.4 g/L) by optimum production medium were increased 10 times, as compared to that determined with basic production medium (1.5 g/L). Fermentation conditions were examined for the mass production of B. licheniformis. The effect of temperature, agitation speed, pH and aeration rate on the mass production of B. licheniformis were also studied in a batch fermenter which was carried out in a 2.5 L bioreactor with a working volume of 1.5 L containing optimized production medium. As a result, dry cell weight of batch culture was 30.7 g/L at $42^{\circ}C$, 300 rpm, pH 8.0 and 2 vvm.

Parametric Optimization of Feruloyl Esterase Production from Aspergillus terreus Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum

  • Kumar, C. Ganesh;Kamle, Avijeet;Mongolla, Poornima;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71-0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of $30^{\circ}C$. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.

Applicability and Methods of Lean Production in Railway Transportation Organization: A Case Study of Urumqi Railway Bureau in China

  • Li, Hong-Chang;Rong, Chao-He;Song, De-Xi
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.45-58
    • /
    • 2008
  • The concept of lean production originated and was applied mainly to manufacture industries Even proven successful with such companies as Toyota, lean production has to be combined railway transportation production in order to bring its function into full play. The paper analyzes for applicability of lean production in railway transportation production organization, puts forward implementation methods such as transportation resource integration, station-zone organization, dispatch command optimization, railway performance evaluation index system, etc., and makes an exemplification study of lean production of Urumqi Railway Bureau in China, which testifies the applicability and efficiency of railway lean production.

  • PDF

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.