DOI QR코드

DOI QR Code

반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화

Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology

  • 김현도 (전남대학교 생물공학과 바이오에너지 및 바이오소재 협동과정) ;
  • 임영금 (전남대학교 생물공학과 바이오에너지 및 바이오소재 협동과정) ;
  • 최종일 (전남대학교 생물공학과 바이오에너지 및 바이오소재 협동과정) ;
  • 한세종 (극지연구소 극지생명과학연구부)
  • Kim, Hyun-do (Department of Biotechnology and Bioengineering, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Im, Young-kum (Department of Biotechnology and Bioengineering, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Choi, Jong-il (Department of Biotechnology and Bioengineering, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute)
  • 투고 : 2015.06.17
  • 심사 : 2015.09.17
  • 발행 : 2016.02.01

초록

본 연구에서는 극지 연구소로부터 분양 받은 Arthrobacter sp. PAMC 27388 균주에서 생산되는 아밀라아제(amylase)를 물리적 요인(physical factor)들의 변화를 통하여 생산배지 최적화를 수행하였다. 한천 배지 상에서 lugol solution을 이용한 클린환의 확인을 통하여 아밀라아제가 생산됨을 확인하였으며, 16S rDNA를 이용하여 동정한 결과 Arthrobacter sp. 임을 확인할 수 있었다. 최적화 이전의 아밀라아제 생산량은 1.66 mU/L로 확인되었다. 최적화 결과, 2.49 mL의 접종부피, pH 6.85, 42.87 mL의 배지 부피의 조건에서 가장 많은 양의 아밀라아제가 생산될 것으로 예상되었으며, 생산량은 2.84 mU/L로 예상되었다. 확인 실험을 통하여 최적화 이전과 비교하여 생산량이 약 150% 증가한 2.50 mU/L의 아밀라아제가 생산됨을 확인할 수 있었다.

In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol's solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.

키워드

참고문헌

  1. Dastager, S. G., Dayanand, A., Li, W. J., Kim, C. J., Lee, J. C., Park, D. J., Tian, X. P. and Raziuddin, Q. S., "Proteolytic Activity from An Alkali-thermotolerant Streptomyces gulbargensis sp. nov," Current Microbiology, 57, 638-642(2008). https://doi.org/10.1007/s00284-008-9257-y
  2. Gomes, J. and Steiner, W., "The Biocatalytic Potential of Extremophiles and Extremozymes," Food technology and Biotechnology, 42, 223-235(2004).
  3. Feller, G. and Gerday, C., "Psychrophilic Enzymes: Hot Topics In Cold Adaptation," Nature Reviews Microbiology, 1, 200-208(2003). https://doi.org/10.1038/nrmicro773
  4. Cavicchioli, R., Siddiqui, K. S., Andrews, D. and Sowers, K. R., "Low-temperature Extremophiles and Their Application," Current Opinion in Biotechnology, 13, 253-261(2002). https://doi.org/10.1016/S0958-1669(02)00317-8
  5. Gerday, C, Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie P., Collins, T., D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M. A. and Feller, G., "Cold-adapted Enzymes: from Fundamentals to Biotechnology," Trends in Biotechnology, 18, 103-107(2000). https://doi.org/10.1016/S0167-7799(99)01413-4
  6. Huston, A. L., "Biotechnological Aspects of Cold-adapted Enzymes," In Psychrophiles: from Biodiversity to Biotechnology, Springer. Berlin. Heidelberg, pp. 347-363(2008).
  7. Peng, Y., Yang, X. and Zhang, Y., "Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Properties, and Thrombolytic Activity in vivo," Appled Microbiology and Biotechnology, 69, 126-132(2005). https://doi.org/10.1007/s00253-005-0159-7
  8. Anto, H., Trivedi, U. and Patel, K., "$\alpha$-Amylase Production by Bacillus cereus MTCC 1305 Using Solid-state Fermentation," Food Technology and Biotechnology, 44, 241-245(2006).
  9. Irfan, M., Nadeem M. and Syed, Q., "Media Optimization for Amylase Production in Solid State Fermentation of Wheat Bran by Fungal Strains," Journal of Cell & Molecular Biology, 10, 55-64(2012).
  10. Pandey, A., Nigam, P., Soccol, C. R. V. T., Soccol, V., Singh, D. and Mohan, R., "Advances in Microbial Amylases," Biotechnology and Applied Biochemistry, 31, 135-152(2000). https://doi.org/10.1042/BA19990073
  11. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K. and Chauhan, B., "Microbial $\alpha$-amylases: a Biotechnological Perspective," Process Biochemistry, 38, 1599-1616(2003). https://doi.org/10.1016/S0032-9592(03)00053-0
  12. Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A. and Osman, G., "Enzymatic Properties of a Novel Thermostable, Thermophilic, Alkaline and Chelator Resistant Amylase from An Alkaliphilic Bacillus sp. isolate ANT-6," Process Biochemistry, 38, 1397-1403(2003). https://doi.org/10.1016/S0032-9592(03)00037-2
  13. Haki, G. D. and Rakshit, S. K., "Developments in Industrially Important Thermostable Enzymes: a Review," Bioresource Technology, 89, 17-34(2003). https://doi.org/10.1016/S0960-8524(03)00033-6
  14. Tonkova, A., "Microbial Starch Converting Enzymes of the $\alpha$-Amylase Family," Microbial Biotechnology in Horticulture, 1, 421-472(2006).
  15. Puri, S., Beg, Q. K. and Gupta, R., "Optimization of Alkaline Protease Production from Bacillus sp. by Response Surface Methodology," Current Microbiology, 44, 286-290(2002). https://doi.org/10.1007/s00284-001-0006-8
  16. Adinarayana, K. and Ellaiah, P., "Response Surface Optimization of the Critical Medium Components for the Production of Alkaline Protease by a Newly Isolated Bacillus sp.," Journal of Pharmacy & Pharmaceutical Sciences, 5, 272-278(2002).
  17. Hanlon, G. W., Hodges, N. A. and Russell, A. D., "The Influence of Glucose, Ammonium and Magnesium Availability on the Production of Protease and Bacitracin by Bacillus licheniformis," Journal of General Microbiology, 128, 845-851(1982).
  18. Lane, D. J., "16S-23S rRNA Sequencing," In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, pp. 115-175(1991).
  19. Sumner, J. B. and Howell, S. F., "A Method for the Determination of Saccharase Activity," Journal of Biological Chemistry, 108, 51-54(1935).
  20. Zhong, G., Wang, Y., Xu, C., Wei, D. and Yang, X., "Application of Response Surface Methodology for the Optimization of Acid $\alpha$-Amylase Production by Bacillus subtilis Y-am6," China Brewing, 9, 019(2011).
  21. Tanyildizi, M. S., Elibol, M. and Ozer, D., "Optimization of Growth Medium for the Production of $\alpha$-amylase from Bacillus amyloliquefaciens Using Response Surface Methodology," Journal of Chemical Technology and Biotechnology, 81, 618-622(2006). https://doi.org/10.1002/jctb.1445
  22. Stergiou, P. Y., Foukis, A., Theodorou, L., Papagianni, M. and Papamichael, E., "Optimization of the Production of Extracellular $\alpha$-amylase by Kluyveromyces marxianus IF0 0288 by Response Surface Methodology," Brazilian Archives of Biology and Technology, 57, 421-426(2014). https://doi.org/10.1590/S1516-8913201401485
  23. Sivakumar, K., Karuppiah, V., Sethubathi, G. V., Thangaradjou, T. and Kannan, L., "Response Surface Methodology for the Optimization of $\alpha$-amylase Production by Streptomyces sp. ML12 Using Agricultural Byproducts," Biologia, 67, 32-40(2012).
  24. Venil, C. K. and Lakshmanaperumalsamy, P., "Response Surface Methodology for the Optimization of Alpha Amylase Production by Serratia marcescens SB08," Pakistan Journal of Scientific and Industrial Research, 51, 333-339(2008).
  25. Kim, H., Yun, C. W., Choi, J. and Han, S. J., "Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology," Korean Chemical Engineering Research, 53, 524-529(2015). https://doi.org/10.9713/kcer.2015.53.4.524
  26. Kim, H., Choi, J. and Han, S. J., "Optimization of Medium for Carotenoids Production by Arthrobacter sp. PAMC 25486 Using Response Surface Methodology," Korean Chemical Engineering Research, 52, 834-839(2014). https://doi.org/10.9713/kcer.2014.52.6.834

피인용 문헌

  1. 반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.723
  2. Medium Optimization and Proteome Analysis of Protease Production by Janthinobacterium sp. vol.25, pp.5, 2016, https://doi.org/10.1007/s12257-020-0110-x