• Title/Summary/Keyword: optimization model

Search Result 5,666, Processing Time 0.031 seconds

A Highly Efficient Aeroelastic Optimization Method Based on a Surrogate Model

  • Zhiqiang, Wan;Xiaozhe, Wang;Chao, Yang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.491-500
    • /
    • 2016
  • This paper presents a highly efficient aeroelastic optimization method based on a surrogate model; the model is verified by considering the case of a high-aspect-ratio composite wing. Optimization frameworks using the Kriging model and genetic algorithm (GA), the Kriging model and improved particle swarm optimization (IPSO), and the back propagation neural network model (BP) and IPSO are presented. The feasibility of the method is verified, as the model can improve the optimization efficiency while also satisfying the engineering requirements. Moreover, the effects of the number of design variables and number of constraints on the optimization efficiency and objective function are analysed in detail. The accuracy of two surrogate models in aeroelastic optimization is also compared. The Kriging model is constructed more conveniently, and its predictive accuracy of the aeroelastic responses also satisfies the engineering requirements. According to the case of a high-aspect-ratio composite wing, the GA is better at global optimization.

Shape Optimization to Minimize The Response Time of Direct-acting Solenoid Valve

  • Shin, Yujeong;Lee, Seunghwan;Choi, Changhwan;Kim, Jinho
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • Direct-acting solenoid valves are used in the automotive industry due to their simple structure and quick response in controlling the flow of fluid. We performed an optimization study of response time in order to improve the dynamic performance of a direct-acting solenoid valve. For the optimal design process, we used the commercial optimization software PIAnO, which provides various tools for efficient optimization including design of experiments (DOE), approximation techniques, and a design optimization algorithm. 35 sampling points of computational experiments are performed to find the optimum values of the design variables. In all cases, ANSYS Maxwell electromagnetic analysis software was used to model the electromagnetic dynamics. An approximate model generated from the electromagnetic analysis was estimated and used for the optimization. The best optimization model was selected using the verified approximation model called the Kriging model, and an optimization algorithm called the progressive quadratic response surface method (PQRSM).

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Development of Optimization Model for Traffic Signal Timing in Grid Networks (네트워크형 가로망의 교통신호제어 최적화 모형개발)

  • 김영찬;유충식
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.87-97
    • /
    • 2000
  • Signal optimization model is divided bandwidth-maximizing model and delay-minimizing model. Bandwidth-maximizing model express model formulation as MILP(Mixed Integer Linear Programming) and delay-minimizing model like TRANSYT-7F use "hill climbing" a1gorithm to optimize signal times. This study Proposed optimization model using genetic algorithm one of evolution algorithm breaking from existing optimization model This Proposed model were tested by several scenarios and evaluated through NETSIM with TRANSYT-7F\`s outputs. The result showed capability that can obtain superior solution.

  • PDF

Experimental validation of FE model updating based on multi-objective optimization using the surrogate model

  • Hwang, Yongmoon;Jin, Seung-seop;Jung, Ho-Yeon;Kim, Sehoon;Lee, Jong-Jae;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.173-181
    • /
    • 2018
  • In this paper, finite element (FE) model updating based on multi-objective optimization with the surrogate model for a steel plate girder bridge is investigated. Conventionally, FE model updating for bridge structures uses single-objective optimization with finite element analysis (FEA). In the case of the conventional method, computational burden occurs considerably because a lot of iteration are performed during the updating process. This issue can be addressed by replacing FEA with the surrogate model. The other problem is that the updating result from single-objective optimization depends on the condition of the weighting factors. Previous studies have used the trial-and-error strategy, genetic algorithm, or user's preference to obtain the most preferred model; but it needs considerable computation cost. In this study, the FE model updating method consisting of the surrogate model and multi-objective optimization, which can construct the Pareto-optimal front through a single run without considering the weighting factors, is proposed to overcome the limitations of the single-objective optimization. To verify the proposed method, the results of the proposed method are compared with those of the single-objective optimization. The comparison shows that the updated model from the multi-objective optimization is superior to the result of single-objective optimization in calculation time as well as the relative errors between the updated model and measurement.

Topology Optimization using S-shape material model (S 모양 가상재료를 이용한 위상최적화)

  • Yoon, G.H.;Kim, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.345-350
    • /
    • 2000
  • In this paper, we introduce a new artificial material model for topology optimization. The present material model, named S-shape material model, accelerates topology optimization process especially in mathematical programming. We overcome the instability and the flatness in heuristic optimization process. Numerical examples show the superiority of the proposed material.

  • PDF

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

A new method for ship inner shell optimization based on parametric technique

  • Yu, Yan-Yun;Lin, Yan;Chen, Ming;Li, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-156
    • /
    • 2015
  • A new method for ship Inner Shell optimization, which is called Parametric Inner Shell Optimization Method (PISOM), is presented in this paper in order to improve both hull performance and design efficiency of transport ship. The foundation of PISOM is the parametric Inner Shell Plate (ISP) model, which is a fully-associative model driven by dimensions. A method to create parametric ISP model is proposed, including geometric primitives, geometric constraints, geometric constraint solving etc. The standard optimization procedure of ship ISP optimization based on parametric ISP model is put forward, and an efficient optimization approach for typical transport ship is developed based on this procedure. This approach takes the section area of ISP and the other dominant parameters as variables, while all the design requirements such as propeller immersion, fore bottom wave slap, bridge visibility, longitudinal strength etc, are made constraints. The optimization objective is maximum volume of cargo oil tanker/cargo hold, and the genetic algorithm is used to solve this optimization model. This method is applied to the optimization of a product oil tanker and a bulk carrier, and it is proved to be effective, highly efficient, and engineering practical.

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

A Study on Optimization Model of Time-Cost Trade-off Analysisusing Particle Swarm Optimization (Particle Swarm Optimization을 이용한 공기-비용 절충관계 최적화 모델에 관한 연구)

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.91-98
    • /
    • 2008
  • It is time-consuming and difficulty to solve the time-cost trade-off problems, as there are trade-offs between time and cost to complete the activities in construction projects and this problems do not have unique solutions. Typically, heuristic methods, mathematical models and GA models has been used to solve this problems. As heuristic methods and mathematical models are have weakness in solving the time-cost trade-off problems, GA based model has been studied widely in recent. This paper suggests the time-cost trade-off optimization algorithm using particle swarm optimization. The traditional particle swarm optimization model is modified to generate optimal tradeoffs among construction time and cost efficiently. An application example is analyzed to illustrate the use of the suggested algorithm and demonstrate its capabilities in generating optimal tradeoffs among construction time and cost. Future applications of the model are suggested in the conclusion.