• Title/Summary/Keyword: optimal wavelength

Search Result 269, Processing Time 0.028 seconds

Development of Sperm MTT Assay for Its Application in Boar Semen

  • Jang, Hyun-Yong;Lee, Hee-Young;Cheong, Hee-Tae;Kim, Jong-Taek;Park, In-Chul;Park, Choon-Keun;Yang, Boo-Keun
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.229-235
    • /
    • 2010
  • The MTT assay is one of superior evaluation methods widely used to analyze the viability of metabolically active cell. It can be used to determine the percentage of viable sperm through measurement of the reduction of MTT granules at mitochondria in sperm tail. The purpose of this study is to determine the optimal condition of a simple and easy MTT assay to validate boar sperm viability and compare the accuracy of this test with microscopic examination. The MTT reduction rate for sperm viability were analyzed in microtiter plates (96 well) from 1 hr to 5 hr incubation periods at $37^{\circ}C$ using spectrophotometer (microplate reader) at 550 nm wavelength. The remainder of semen sample was simultaneously examined to compare the correlation of accuracy between MTT assay and other sperm parameters. Those sperm parameters were included the motility, survival rates, membrane integrity, mitochondria activity and acrosome integrity. The OD values of MTT assay (MTT reduction rates) did not greatly change at 1 hr to 5 hr incubation periods in different proportion of live and freeze-killed sperms (dead sperm). The MTT reduction rates or survival rates were decreased according to the different concentration of live and dead sperm. The linear regression at 1 hr and 4 hr incubation periods in sperm MTT assay was y=291.55x-72.176 and y= 180.64x-44.569, respectively. There are high correlation between 1 hr and 4 hr incubation periods (p<0.001). The results of MTT assay and other sperm parameters has a positive correlation (p<0.01 or 0.05). The correlation coefficients for MTT assay was 0.88115 for motility, 0.89868 for survival rates, 0.91722 for membrane integrity and 0.77372 for acrosome integrity, respectively. In conclusion, the MTT assay can be used as a reliable and efficient evaluation method for boar sperm viability. It can be use practical means to evaluate the quality of boar sperm by a fast, inexpensive and easy method.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.

Composition and Quantitative Analysis of Stilbenoids in Mulberry (Morus alba L.) Leaves and Fruits with DAD/UV HPLC (DAD/UV HPLC를 이용한 뽕잎과 오디(Morus alba L.)에 함유된 Stilbenoids 조성 및 함량 분석)

  • Kim, Ji-Sun;Ha, Tae-Youl;Ahn, Ji-Yun;Kim, Hyun-Ku;Kim, Sun-A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.124-128
    • /
    • 2008
  • This study was aimed to analyze the composition and to quantify the contents of stilbenoids in the leaves and fruits of Morus alba L. using high performance liquid chromatography with phodtodiode array detector and UV detector. Optimal wavelength for the detection of various stilbenoids such as resveratrol, piceatannol, rhapontigenin, astringin, pterostilbene, piceid, rhaponticin and vitisin A was screened by DAD detector and set to 308 nm. Seven kinds of stilbenoids except vitisin A were identified in fruits, while 5 kinds of stilbenoids in leaves. Total stilbenoids contents were $609.15{\pm}7.24$ mg/100 g d.w. in fruits and $188.57{\pm}1.70$ mg/100 g d.w in leaves. Stilbenoids contents in fruits were 3 times higher than those in leaves. Rhaponticin was the most profound stilbene, analyzed to $389.26{\pm}5.22$ mg/100 g d.w. (63.8% of total stilbenoids) in fruits and $99.17{\pm}2.79$ mg/100 g d.w. (52.5% of total stilbenoids) in leaves. Astringin and piceatannol were only detected in fruits and vitisin A was not detected. Contents of piceid and rhaponticin were higher than those of aglycone forms, rhapontigenin and resveratrol.

A Study of the Growth Characteristics of Starry Flounder Platichthys Stellatus in Accordance with the LED Wavelength (LED 파장에 따른 강도다리 Platichthys Stellatus 성장특성)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.495-500
    • /
    • 2015
  • Currently the fish aquaculture industry of Korea is focused on the mass culture of flatfish (Paralichthys olivaceus) and and rockfish (Sebastes schlegeli) with completely controlled culture techniques. Recently, there has been considerable interest in new species development, such as the starry flounder (Platichthys stellatus). The value of starry flounder (Platichthys stellatus) as a raw fish increases with time because it is tasty, light, and bouncy. In this paper, the growth characteristics dependent on the LED wavelengths and the optimal growth conditions of the starry flounder were studied. In these experiments 4 different kinds of LED lighting, configurations were designed and prepared using red, green, blue and white, respectively. The fish aquaculture experiments were conducted over 10 weeks in four fish tanks, each installed with a different color of LED lighting. 10 starry flounders of 13 ~ 17g were placed into each tank. The effects of each color of light on the growth rate of the starry flounders were then examined. As a result, the starry flounders under the green LED lighting showed the highest growth rate, followed by the white, red, and blue LED lighting. Based on these results, a green light provides a suitable breeding environment for the starry flounder.

Measurement of Glucose and Protein in Urine Using Absorption Spectroscopy Under the Influence of Other Substances (타 성분 영향을 고려한 요당과 요단백의 흡수분광학 진단)

  • Yoon, Gil-Won;Kim, Hye-Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.346-353
    • /
    • 2009
  • Glucose and protein in urine are among the important substances for urine analysis and have generally been measured based on a reagent strip test. In this study, these two substances were measured using mid-infrared absorption spectroscopy. Samples were prepared from a commercial synthetic urine product. Glucose and albumin were added as well as red blood cells, which are expected to create the most spectroscopic interference of any substance. Concentrations of these substances were varied independently. Optimal wavelength regions were determined from a partial least squares regression analysis (glucose 980 - 1150/cm, albumin 1400 - 1570/cm). Interference by other substances increased the differences between measured and predicted values. Albumin measurement in particular weres heavily influenced by the presence of glucose and red blood cells. Depending on the inference by other substances, measurement errors were 29.85${\sim}$45.19 mg/dl for a glucose level between 0 and 1000 mg/dl and 14.0${\sim}$93.11 mg/dl for an albumin level of 0 ${\sim}$ 500 mg/dl. Our study proposes an alternative to the chemical test-strip analysis, which shows only discrete concentration levels.

Optimal HPLC Condition for Simultaneous Determination of Anthocyanins in Black Soybean Seed Coats (검정콩 함유 안토시아닌의 동시분석을 위한 최적 HPLC 분석 조건)

  • Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.359-368
    • /
    • 2008
  • Black soybean has been widely utilized as foods and oriental medicinal materials. The pigmentation in the seed coat of black soybean is due to accumulate anthocyanins in the epidermis palisade layer. The anthocyanins of black soybean seed coat are considered as a parameter of quality evaluation of black soybean. Therefore, the purpose of this study was to investigate the most suitable HPLC condition for simultaneous determination of anthocyanins in black soybean seed coats extracts. The efficient HPLC analytical condition of D3G, C3G, and Pt3G contained extracts of black soybean seed coats was developed. The gradient elution employed a $250\;mm\;{\times}\;4.6\;mm$ i.d. YMC-pak ODS-AM 303 column. The gradient system was used two mobile phases. A gradient elution was performed with mobile phase A, consisting of 5% aqueous formic acid, and mobile phase B, comprising 5% formic acid - acetonitrile, and delivered at a flow rate of 0.7 mL/min as follows: $0{\sim}35\;min$, $90%\;A{\sim}60%\;A$; 36 min, 90% A; 46 min, 90% A. The UV-VIS. detection wavelength was set at 520 nm. The limit of detection (LOD) for D3G, C3G, and Pt3G were under 10 ng/mL.

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

A Study on the Implementation and Development of Image Processing Algorithms for Vibes Detection Equipment (정맥 검출 장비 구현 및 영상처리 알고리즘 개발에 대한 연구)

  • Jin-Hyoung, Jeong;Jae-Hyun, Jo;Jee-Hun, Jang;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.463-470
    • /
    • 2022
  • Intravenous injection is widely used for patient treatment, including injection drugs, fluids, parenteral nutrition, and blood products, and is the most frequently performed invasive treatment for inpatients, including blood collection, peripheral catheter insertion, and other IV therapy, and more than 1 billion cases per year. Intravenous injection is one of the difficult procedures performed only by experienced nurses who have been trained in intravenous injection, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Nurses who frequently perform intravenous injections may also make mistakes because it is not easy to detect veins due to factors such as obesity, skin color, and age. Accordingly, studies on auxiliary equipment capable of visualizing the venous structure of the back of the hand or arm have been published to reduce mistakes during intravenous injection. This paper is about the development of venous detection equipment that visualizes venous structure during intravenous injection, and the optimal combination was selected by comparing the brightness of acquired images according to the combination of near-infrared (NIR) LED and Filter with different wavelength bands. In addition, an image processing algorithm was derived to threshehold and making blood vessel part to green through grayscale conversion, histogram equilzation, and sharpening filters for clarity of vein images obtained through the implemented venous detection experimental module.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.