• Title/Summary/Keyword: optimal use

Search Result 3,867, Processing Time 0.032 seconds

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Control Gain Optimization for Mobile Robots Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘에 기초한 이동로봇의 제어 이득 최적화)

  • Choi, Young-kiu;Park, Jin-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.698-706
    • /
    • 2016
  • In order to move mobile robots to desired locations in a minimum time, optimal control problems have to be solved; however, their analytic solutions are almost impossible to obtain due to robot nonlinear equations. This paper presents a method to get optimal control gains of mobile robots using genetic algorithms. Since the optimal control gains of mobile robots depend on the initial conditions, the initial condition range is discretized to form some grid points, and genetic algorithms are applied to provide the optimal control gains for the corresponding grid points. The optimal control gains for general initial conditions may be obtained by use of neural networks. So the optimal control gains and the corresponding grid points are used to train neural networks. The trained neural networks can supply pseudo-optimal control gains. Finally simulation studies have been conducted to verify the effectiveness of the method presented in this paper.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Optimal Location Analysis in terms of Efficiency for Solar Energy Facilities (효율성 측면에서 태양광 에너지 시설 최적입지에 관한 연구)

  • Yang, Il-Seung;An, Hyung-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.656-664
    • /
    • 2018
  • The following study was conducted to determine the optimal location in terms of efficiency for solar energy facilities, and to propose a policy implications for the orientation of the installments. 92 cases in Jeollanam-do Province were selected. A regression analysis was performed between the average electricity generation time as the dependent variable, and the facility, weather and site conditions as the independent variables. As a result, 5 variables were deemed significant. Larger site areas, closer proximity to rivers, islands, oceans, etc., least south-oriented, higher average wind speed, and facilities in agricultural land use and natural environment conservation land use had the highest efficiency. This study minimized the possibility of secure databases and errors following facility types, and was limited in the number of sites studied, since this was only conducted in Jeollanam-do Province. Nevertheless, these conclusions still offer important policy implications for determining the most optimal location for solar energy facilities.

The Optimization path searching Method Development for Destination (목적지를 고려한 최적 경로탐색 기법 개발)

  • Ham Young-Kug;Kim Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the new technique to compute the optimal route by considering the direction of distribution vehicles and the location for delivery, developing the algorithm of the shortest route to approach the location as applying the gemetic algorithm. This approach makes it possible for us to find the best route even under itineraries which include many destinations. Lively studies are currently in progress on the development of vehicle navigation software, combining PDA GPS, and electronic maps. Many web-sites are providing a varier of services which use electronic maps. Popular among these services is one that computes the optimal route between two positions that a user inputs. This service of computing the optimal route plays an important role in distribution industries such as home-delivery. For the distribution system. the construction of a vehicle regulation system enables us to calculate and manipulate the optimal route for distribution vehicles, to enhance the efficiency in making use of vehicles and labor, and to reduce costs.

  • PDF

Optimal Price and Auction Period Decision Method Based on Auction Game Theory for Spectrum Allocation in Cognitive Radio Networks (인지무선 주파수 분배 과정에서 옥션게임을 이용한 최적 가격 및 옥션 주기 결정 방법)

  • Park, Jin-Seok;Kang, Keon-Kyu;Lee, Sang-Young;Baek, Sun-Woo;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.944-954
    • /
    • 2013
  • Cognitive radio technology gives secondary users chances that they can use specific spectrum of the primary user when the primary user doesn't use it. This paper proposes the algorithm that maximizes the benefit of the primary user considering spectrum price and auction period by using the auction game theory. According to the ratio of spectrum that secondary users bid, primary user allocates spectrum to secondary users. In the process of repeated auction, the primary user gets to find the optimal price of spectrum. Using the price and the proposed utility function of primary user, we derive the optimal auction period. At the same time, the primary user finally determines the price of spectrum appropriate for the optimal period.

Shape Optimization of Multilayer Bellows by Using Sequential Experimental Design (순차적 실험계획법을 적용한 다층관 벨로우즈 형상 최적설계)

  • Oh, Sang-Kyun;Lee, Kwang-Ki;Suh, Chang-Hee;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1007-1013
    • /
    • 2011
  • Because of their high flexibility and durability, multilayer bellows are manufactured for use in commercial vehicles, while single-layer bellows are manufactured for use in passenger vehicles. A study based on the finite element method (FEM) and shape optimization for the single-layer bellows has been actively performed; however, until now, a study based on the FEM has rarely been performed for the multilayer bellows with gaps between the layers. This paper presents a finite-element modeling scheme for the multilayer bellows to improve simulation reliability during the evaluation of stress and flexibility. For performing shape optimization for the multilayer bellows, DOE (design of experiment) and the Kriging metamodel followed by the D-optimal method are used.

A Study on the Optimal Number of Air Tanker for Patrol Operations (초계작전을 위한 공중급유기 적정 대수 산정 연구)

  • Park, Sehoon;Chung, Ui-Chang;Chung, Je-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Air refueling is expected to increase the efficiency of the air force operations. This follows from the introduction of air refueling aircraft, which should to increase operational time by increasing the range and duration of fighter jets. Despite the effectiveness of the air refueling air crafts, the astronomical costs of adapting the air tankers call for careful discussions on whether to acquire any air craft and if so, how many. However there is no academic study on the subject to our knowledge. Thus, we use the ABM(Agent Based Modeling) technique to calculate the optimal number of air tankers during patrol operation. We have enhanced the reliability of the simulation by entering the specifications of the current aircraft operated by the Korean Air Force. As an optimization tool for determining the optimal number of counts, we use OptQuest built into the simulation tools and show that the optimal number of air tanker is 4.