DOI QR코드

DOI QR Code

Control Gain Optimization for Mobile Robots Using Neural Networks and Genetic Algorithms

신경회로망과 유전알고리즘에 기초한 이동로봇의 제어 이득 최적화

  • Choi, Young-kiu (Department of Electrical Engineering, Pusan National University) ;
  • Park, Jin-hyun (Dep. of Mechatronics Engineering, Kyeongnam National University of Science and Technology)
  • Received : 2016.01.08
  • Accepted : 2016.02.14
  • Published : 2016.04.30

Abstract

In order to move mobile robots to desired locations in a minimum time, optimal control problems have to be solved; however, their analytic solutions are almost impossible to obtain due to robot nonlinear equations. This paper presents a method to get optimal control gains of mobile robots using genetic algorithms. Since the optimal control gains of mobile robots depend on the initial conditions, the initial condition range is discretized to form some grid points, and genetic algorithms are applied to provide the optimal control gains for the corresponding grid points. The optimal control gains for general initial conditions may be obtained by use of neural networks. So the optimal control gains and the corresponding grid points are used to train neural networks. The trained neural networks can supply pseudo-optimal control gains. Finally simulation studies have been conducted to verify the effectiveness of the method presented in this paper.

이동로봇을 원하는 위치로 최단시간 안에 이동시키기 위해 최적제어문제를 풀어야 하지만 비선형시스템이므로 해석적 접근이 매우 어렵다. 본 논문에서 유전알고리즘을 사용하여 이동로봇의 최적제어이득을 구한다. 로봇 방정식이 비선형식이므로 초기치에 따라 최적제어이득은 다르게 결정된다. 따라서 초기치 범위를 적절한 개수의 격자점으로 이산화시킨 뒤 해당 격자점에서 유전알고리즘으로 최적제어이득을 구한다. 일반적인 초기치에 대한 제어이득은 신경회로망으로 구하며 해당 격자점의 초기치와 그에 대한 최적제어이득을 신경회로망 학습데이터로 사용하고 학습시킨다. 이산화된 격자점이 아닌 다른 초기치에 대한 제어이득은 신경회로망으로부터 구한다. 마지막으로 본 논문의 제어방법의 유용성을 시뮬레이션 연구로 확인하고자 한다.

Keywords

References

  1. F. Fahimi, Autonomous Robots: Modeling, Path Planning, and Control, New York, NY:Springer, 2010.
  2. R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile Robots, 2nd ED, Cambridge, MA: The MIT Press, 2011.
  3. D.E. Kirk, Optimal Control Theory: An Introduction, Englewood Cliffs, NJ: Prentice-Hall, Inc., 2004.
  4. F.L. Lewis, D. Vrabie and V.L. Syrmos, Optimal Control: 3rd ED, Hoboken, NJ: John Wiley & Sons Inc., 2012.
  5. Y.K. Choi and J.H. Park, "Minimum-time trajectory control of ships using neural networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 1, pp 117-126, Jan. 2013. https://doi.org/10.6109/jkiice.2013.17.1.117
  6. M. Mitchell, An Introduction to Genetic Algorithms, Cambridge, MA: The MIT Press, 1998.
  7. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Berlin, Heidelberg: Springer, 1996.
  8. V. Kecman, Learning and Soft Computing, Cambridge, MA: The MIT Press, 2001.
  9. C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems, Upper Saddle River, NJ: Prentice Hall, 1996.
  10. E.R. Fierro and F.L. Lewis, "Control of a nonholonomic mobile robot using neural networks," IEEE Trans on Neural Networks, vol. 9, no. 4, July 1998.
  11. Y.K. Choi, M.J. Lee and S.S. Kim, "Design and Implementation of an adaptive neural network compensator for control systems," IEEE Trans. on Industrial Electronics, vol. 48, no. 2, April 2001.

Cited by

  1. 유전알고리즘을 이용한 이동로봇의 시간 및 에너지 최적제어 vol.21, pp.4, 2016, https://doi.org/10.6109/jkiice.2017.21.4.688
  2. 일반제한조건의 이동로봇예측제어기 최적화 vol.22, pp.4, 2016, https://doi.org/10.6109/jkiice.2018.22.4.602
  3. Design of Model Predictive Controllers with Velocity and Acceleration Constraints vol.20, pp.6, 2016, https://doi.org/10.17958/ksmt.20.6.201812.809