• Title/Summary/Keyword: optimal treatment conditions

Search Result 783, Processing Time 0.029 seconds

Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT

  • Li, Qi;Wang, Lei;Fang, Xianying;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.447-457
    • /
    • 2022
  • Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75℃, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.

Optimized Conditions for High Erythritol Production by Penicillium sp. KJ-UV29, Mutant of Penicillium sp. KJ81

  • Lee, Kwang-Jun;Lim, Jai-Yun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.173-178
    • /
    • 2003
  • To improve the erythritol productivity of Penicillium sp. KJ81, mutants were obtained using UV irradiation and NTG treatment Among these mutants, Penicillium sp. KJ-UV29 revealed no morphological changes, yet was superior to the wild strain in the following three points: (1) Penicillium sp. KJ-UV29 produced more erythritol than the wild strain under the same conditions, (2) no foam was produced during cultivation, unlike the wild strain, and (3) the mutant produced a Significantly lower amount of glycerol. Penirillium sp. KJ-UV29 produced as much as 15.1 g/L of erythritol, whereas the wild-type Penirillium sp. KJ81 only produced 11.7 g/L. Penicillium sp. KJ-UV29 only generated 6.1 g/L of glycerol, compared to 19.4 g/L produced by the wild strain. When investigating the optimal culture conditions for erythritol production by the mutant strain Penicillium sp. KJ-UV89, sucrose was identified as the most effective carbon source, and the mutant was even able to produce erythritol in a 70% sucrose-containing medium, although a 30% sucrose medium exhibited the highest productivity. The production of erythritol by Penirillium sp. KJ-UV29 was also significantly increased by the addition of ammonium carbonate, potassium nitrate, and sodium nitrate. Accordingly, under optimal conditions, Penicillium sp. KJ-UV29 produced 45.2 g/L of erythritol in a medium containing 30% sucrose, 0.5% yeast extract, 0.5% (NH$_4$)$_2$C$_2$O$_4$, 0.1% KNO$_3$, 0.1% NaNO$_3$, and 0.01% FeSO$_4$ with 1 vvm aeration and 200 rpm agitation at 37$^{\circ}C$ for 7 days in a 5-L jar fermentor.

Diamond Crystal Growth Behavior by Hot Filament Chemical Vapor Deposition According to Pretreatment Conditions

  • Song, Chang Weon;You, Mi Young;Lee, Damin;Mun, Hyoung Seok;Kim, Seohan;Song, Pung Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.241-248
    • /
    • 2020
  • The change of the deposition behavior of diamond through a pretreatment process of the base metal prior to diamond deposition using HFCVD was investigated. To improve the specific surface area of the base material, sanding was performed using sandblasting first, and chemical etching treatment was performed to further improve the uniform specific surface area. Chemical etching was performed by immersing the base material in HCl solutions with various etching time. Thereafter, seeding was performed by immersing the sanded and etched base material in a diamond seeding solution. Diamond deposition according to all pretreatment conditions was performed under the same conditions. Methane was used as the carbon source and hydrogen was used as the reaction gas. The most optimal conditions were found by analyzing the improvement of the specific surface area and uniformity, and the optimal diamond seeding solution concentration and immersion time were also obtained for the diamond particle seeding method. As a result, the sandblasted base material was immersed in 20% HCl for 60 minutes at 100 ℃ and chemically etched, and then immersed in a diamond seeding solution of 5 g/L and seeded using ultrasonic waves for 30 minutes. It was possible to obtain optimized economical diamond film growth rates.

Study on Plasma Treatment of electrode for CCFL (CCFL 전극의 플라즈마 처리에 관한 연구)

  • Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1308-1312
    • /
    • 2011
  • CCFL(Cold Cathode Fluorescent Lamp)for BLU of LCD and special lighting has been widely utilized. The removal of oxide film formed on electrode of CCFL in manufacturing process is required. In this pape Plasma treatment was carried out to remove the oxide film. To ensure the optimum process, the analysis of sheet resistance, XRD, AFM and solder test was conducted. A minimum sheet resistance and the maximum percentage of the solder coverage ratio were measured in optimal process conditions such as plasma power consumption 600W and processing time of 70 seconds. As the plasma treatment is confirmed to be due to removal of copper oxide, this process is expected to be used as a treatment of electrode for CCFL.

Phosphate Removal from Aqueous Solution according to Activation Methods of Red Mud (알루미늄 제련 폐기물(Red Mud)의 활성화 방법에 따른 수용상의 인산염 제거특성)

  • Kim, I-Tae;Bae, Woo-keun;Kim, Woo-jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.466-472
    • /
    • 2004
  • Red mud is formed as a waste during bauxite refining known as Bayer's process. Its main constituents are iron, aluminium, sodium and silica. The disposal of large quantities of wasted red mud causes a serious ecological problem. In this study, the red mud wasted from the bauxite refinery was studied for phosphate removal from aqueous solution according to activation methods. The influence of heat treatment, and neutralization with sea water and acid treatment level for the optimum conditions for phosphate removal have been determined. Heat treatment combined with acid treatment is most suitable for the removal of phosphate from aqueous solution. The optimal condition was activated with 1 N HCl solution after heating in $600^{\circ}C$ during 4 hours. Acid and heat treatment causes sodalite compounds which hinder the phosphate adsorption to leach out. The adsorption data obtained followed a first-order rate expression and fitted well with the Freundlich Isotherm well.

Potential Use of Microalgae Scenedesmus acuminatus for Tertiary Treatment of Animal Wastewater (축산폐수 고도처리를 위한 미세조류 Scenedesmus acuminatus의 이용 가능성)

  • Park, Ki-Young;Lim, Byung-Ran;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • The green algae Scenedesmus acuminatus was cultured in different media: animal wastewater and an artificial culture medium in order to evaluate potential use for tertiary treatment. The experiments were conducted with air flowrate 1~2 L/min at $28{\sim}30^{\circ}C$. The nitrogen and phosphorus showed very similar removal efficiencies (68~77 % and 69~80 % for nitrogen and phosphorus respectively). The optimal fed period was estimated as three days in the semi-continuous experiment. The effects of $CO_2$ (4.5 %) injection on nutrient uptake from animal wastewater (biological treatment effluent) were compared to an air injection under the same conditions of light and photoperiod. The uptake rates of nutrient with air injection were observed 0.009 gN/gChl-a/day, 0.028 gN/gChl-a/day and T-P 0.003 gP/gChl-a/day for nitrate, total nitrogen and phosphorus respectively. The rates were enhanced by addition of $CO_2$ to 0.026 gN/gChl-a/day, 0.076 gN/gChl-a/day and T-P 0.018 gP/gChl-a/day. This study establishes that $CO_2$ addition during nutrient deprivation of microalgal cells may accelerate tertiary wastewater treatment.

Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization

  • Ayed, Lamia;Zmantar, Tarek;Bayar, Sihem;Charef, Abdelkrim;Achour, Sami;Mansour, Hedi Ben;Mzoughi, Ridha El
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1629-1635
    • /
    • 2019
  • Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium (Lactobacillus acidophilus and Lactobacillus plantarum). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.5 and temperature $25^{\circ}C$. The bio-decolorization process was further confirmed by FTIR and UV-Vis analysis. Under optimal conditions, the bacterial consortium was able to decolorize the dye completely (>99%) within 12 h. The color removal was 99.37% at 750 ppm. Muliplex PCR technique was used to detect the Lactobacillus genes. Using phytotoxicity, cytotoxicity, mutagenicity and biototoxicity endpoints, toxicological studies of RBO 3R before and after biodegradation were examined. A toxicity assay signaled that biodegradation led to detoxification of RBO 3R dye.

The Treatment of Flexo-inks Wastewater using Powdered Activated Carbon Including Iron-transition Metal (철 전이금속이 담지된 분말활성탄을 이용한 후렉소잉크 폐수의 처리)

  • Cho, Yong-Duck;Yoon, Won-Jung;Kang, Ik-Joong;Yoo, In-Sang;Lee, Sang-Wha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.996-1003
    • /
    • 2006
  • The absorption characteristics of powdered activated carbon doped by transition-metal nanoparticles were investigated to enhance the remove efficiencies of $TCOD_{Mn}$ and Color from the flexo-inks wastewater. According to the adsorption dynamics of PAC and MPAC, the optimal dosage of activated-carbon adsorbents was 3 g/L under the reaction conditions of pH6.0, 30 mill of reaction time, 240 rpm of mixing intensity. The removal efficiencies by the optimal dosages were maximized as 19% $TCOD_{Mn}$, 57% Color for PAC and 88% $TCOD_{Mn}$, 95% Color for MPAC. Freundlich indexes of isotherm absorption were estimated as follows: i) For PAC, k=-8.11, 1/n=2.98, r=0.91 in the raw water, and k=0.14, b/n=0.75, r=0.96 in the biological treatment water, ii) For MPAC, k=2.69, 1/n=0.21, r=0.80 in the raw water, and k=0.74, 1/n=1.17, r=0.95 in the biological treatment water. MPAC (Powdered activated carbon doped by transition-metal nanoaprticles) was very effective in the removal of organics from the raw water and biological treatment water, as Freundlich indexes of 1/n for both types of water were estimated less than 2.0.

A Study on Retrofitting BWTS using 3D Digital Design (3D Digital Design 기법을 이용한 BWTS 설치 설계 연구)

  • JEE, Jae-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.503-512
    • /
    • 2017
  • Over the past few years, as maritime trade and traffic were highly expanding, problem of invasive species via ballast water have been raised. In 1988, Canada and Australia had firstly experience that unexpected and hazardous species were observed on their own sea, they have issued the problem to MEPC under the IMO. At the end of many years of discussion, on the diplomatic conference in 13 Feb. 2004, "International Convention for the Control and Management of Ballast Water and Sediments of the Ship" was adopted. Requirements for entering into force of this Convention is that 30 countries ratify and world merchant marine fleet is more than 35% and BWM Convention will be effected after 12months from date satisfying conditions. With Finland ratifying the BWM Convention on 8 Sep. 2016, the fleet amounted to 35.1441% and ratification country became 52 countries. Therefore, after 12month, BWM Convention will be formally effected on 8 Sep. 2017. Ballast Water Treatment System is to be fitted in new ships as well as existing ships. Thus, there are concerns of ship owners to be suitably installed a variety typed BWTS in many kinds of vessels. As approaching for resolving these problems, engineering analysis was carried out research studies and detailed design to analyze to optimal installation space for retrofitting a BWTS using 3D Scanning method, targeting representative DWT 180K Bulk carrier of dry cargo vessels charged more 40% on worldwide vessel and mainly two type BWTS as electrolysis treatment type and ultra violet treatment type. Optimal design of 3D Scanning technology was applied to analyze four step process and the overall conclusion was described in this paper.

Bioethanol Production using Endogenous Triticale Enzyme (라이밀 자체 효소를 이용한 바이오에탄올 생산)

  • Choi, Gi-Wook;Kim, Yule;Moon, Se-Kwon
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.504-508
    • /
    • 2008
  • The objectives of this study were to develope the economical process for bioethanol production from domestic triticale and investigate optimal fermentation conditions such as temperature, time, and enzyme concentration used to pre-treatment process. Triticale mash, containing 148 g of total sugar per 1 L of mash, was fermented with Saccharomyces cerevisiae CHY1011 at $33^{\circ}C$. Fermentation of mash supplemented with enzyme was completed within 48-60 hours, and the ethanol yield was 410.9 L/tonne of dry base. On the other hand, fermentation of mash without enzyme addition was completed within 36-48 hours, but the ethanol yield was 342.2 L/tonne of dry base. For optimal bioethanol production from triticale, viscosity reduction enzyme was added in the pre-treatment process, and the fermentation rate of triticale was 92.0-94.2%. In addition, the results showed that bioethanol production of triticale by low-temperature pre-treatment would provide higher ethanol production efficiency and lower operating costs.