DOI QR코드

DOI QR Code

Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT

  • Li, Qi (Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University) ;
  • Wang, Lei (College of Chemical Engineering, Nanjing Forestry University) ;
  • Fang, Xianying (College of Chemical Engineering, Nanjing Forestry University) ;
  • Zhao, Linguo (Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University)
  • Received : 2021.11.11
  • Accepted : 2022.02.08
  • Published : 2022.04.28

Abstract

Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75℃, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.

Keywords

Acknowledgement

This work was funded by the National Key Research Development Program of China National Key R&D Program of China (2016YFD0600805) and the Forestry Achievements of Science and Technology to Promote Projects ([2017] 10).

References

  1. Traish AM, Abdallah B, Yu G. 2011. Androgen deficiency and mitochondrial dysfunction: implications for fatigue, muscle dysfunction, insulin resistance, diabetes, and cardiovascular disease. Horm. Mol. Biol. Clin. Investig. 8: 431-444. https://doi.org/10.1515/HMBCI.2011.132
  2. Huang LZ, Huang BK, Ye Q, Qin LP. 2011. Bioactivity-guided fractionation for anti-fatigue property of Acanthopanax senticosus. J. Ethnopharmacol. 133: 213-219. https://doi.org/10.1016/j.jep.2010.09.032
  3. Blain GM, Hureau TJ. 2017. Limitation of fatigue and performance during exercise: the brain-muscle interaction. Exp. Physiol. 102: 3-4. https://doi.org/10.1113/EP085895
  4. Kaulmann A, Bohn T. 2014. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 34: 907-929. https://doi.org/10.1016/j.nutres.2014.07.010
  5. Luo L, Cai LM, Hu XJ. 2014. Evaluation of the anti-hypoxia and anti-fatigue effects of Ganoderma lucidum polysaccharides. Appl. Mech. Mater. 522-524: 303-306. https://doi.org/10.4028/www.scientific.net/AMM.522-524.303
  6. Horng CT, Huang JK, Wang HY, Huang CC, Chen FA. 2014. Antioxidant and antifatigue activities of polygonatum alte-lobatum hayata rhizomes in rats. Nutrients 6: 5327-5337. https://doi.org/10.3390/nu6115327
  7. Yeh TS, Chuang HL, Huang WC, Chen YM, Huang CC, Hsu MC. 2014. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 19: 2793-2807. https://doi.org/10.3390/molecules19032793
  8. Lum JH, Fung KL, Cheung PY, Wong MS, Lee CH, Kwok FS, et al. 2002. Proteome of oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics 2: 1123-1130. https://doi.org/10.1002/1615-9861(200209)2:9<1123::AID-PROT1123>3.0.CO;2-S
  9. Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, et al. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115: 340-346. https://doi.org/10.1016/j.foodchem.2008.11.079
  10. Zhang L, Zhou QL, Yang XW. 2018. Determination of the transformation of ginsenosides in Ginseng Radix et Rhizoma during decoction with water using ultra-fast liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 41: 1039-1049. https://doi.org/10.1002/jssc.201701228
  11. Lee CH, Kim JH. 2014. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 38: 161-166. https://doi.org/10.1016/j.jgr.2014.03.001
  12. Wong AS, Che CM, Leung KW. 2015. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Prod. Rep. 32: 256-272. https://doi.org/10.1039/C4NP00080C
  13. Bae EA, Han MJ, Kim EJ, Kim DH. 2004. Transformation of ginseng saponins to ginsenoside rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 27: 61-67. https://doi.org/10.1007/BF02980048
  14. Wang J, Li D, Hou J, Lei H. 2018. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA1555p inhibition. Mol. Med. Rep. 17: 3186-3193.
  15. Li J, Yang C, Zhang S, Liu S, Zhao L, Luo H, et al. 2018. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor kappaB pathway and inhibition of inflammasome activation in alcoholic hepatitis. Int. J. Mol.Med. 41: 899-907.
  16. Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, et al. 2016. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J. Ginseng Res. 40: 9-17. https://doi.org/10.1016/j.jgr.2015.04.006
  17. Huang BM, Xiao SY, Chen TB, Xie Y, Luo P, Liu L, et al. 2017. Purity assessment of ginsenoside Rg1 using quantitative (1)H nuclear magnetic resonance. J. Pharm. Biomed. Anal. 139: 193-204. https://doi.org/10.1016/j.jpba.2017.02.055
  18. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, et al. 2000. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704. https://doi.org/10.1021/np990152b
  19. Liu L, Gu LJ, Zhang DL, Wang Z, Sung CK. 2010. Microbial conversion of rare ginsenoside Rf to 20(S)-protopanaxatriol by Aspergillus niger. Biosci. Biotechnol. Biochem. 74: 96-100. https://doi.org/10.1271/bbb.90596
  20. Pei J, Xie J, Yin R, Zhao L, Ding G, Wang Z, et al. 2015. Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069T. J. Mol. Catal. B: Enzym. 113: 104-109. https://doi.org/10.1016/j.molcatb.2014.12.012
  21. Shin KC, Seo MJ, Oh DK. 2014. Characterization of beta-xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh 1 from notoginsenosides R1 and R2. Biotechnol. Lett. 36: 2275-2281. https://doi.org/10.1007/s10529-014-1604-4
  22. Zhang R, Li N, Xu S, Han X, Li C, Wei X, et al. 2019. Glycoside hydrolase family 39 beta-xylosidases exhibit beta-1,2-xylosidase activity for transformation of notoginsenosides: A new EC subsubclass. J. Agric. Food Chem. 67: 3220-3228. https://doi.org/10.1021/acs.jafc.9b00027
  23. Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, et al. 2013. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol. Biofuels 6: 27. https://doi.org/10.1186/1754-6834-6-27
  24. Patel H, Kumar AK, Shah A. 2018. Purification and characterization of novel bi-functional GH3 family beta-xylosidase/beta-glucosidase from Aspergillus niger ADH-11. Int. J. Biol. Macromol. 109: 1260-1269. https://doi.org/10.1016/j.ijbiomac.2017.11.132
  25. Zhang S, Xie J, Zhao L, Pei J, Su E, Xiao W, et al. 2019. Cloning, overexpression and characterization of a thermostable beta-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a beta-glucosidase. Bioorg. Chem. 85: 159-167. https://doi.org/10.1016/j.bioorg.2018.12.026
  26. Zimbardi AL, Sehn C, Meleiro LP, Souza FH, Masui DC, Nozawa MS, et al. 2013. Optimization of beta-glucosidase, beta-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int. J. Mol. Sci. 14: 2875-2902. https://doi.org/10.3390/ijms14022875
  27. Peng X, Su H, Mi S, Han Y. 2016. A multifunctional thermophilic glycoside hydrolase from Caldicellulosiruptor owensensis with potential applications in production of biofuels and biochemicals. Biotechnol. Biofuels 9: 98. https://doi.org/10.1186/s13068-016-0509-y
  28. Dou TY, Luan HW, Ge GB, Dong MM, Zou HF, He YQ, et al. 2015. Functional and structural properties of a novel cellulosome-like multienzyme complex: efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel. Sci. Rep. 5: 13768. https://doi.org/10.1038/srep13768
  29. Li Q, Wu T, Qi Z, Zhao L, Pei J, Tang F. 2018. Characterization of a novel thermostable and xylose-tolerant GH 39 beta-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 18: 29. https://doi.org/10.1186/s12896-018-0440-3
  30. Shao W, Wiegel J. 1992. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848-5853. https://doi.org/10.1128/jb.174.18.5848-5853.1992
  31. Li D, Ren JW, Zhang T, Liu R, Wu L, Du Q, et al. 2018. Anti-fatigue effects of small-molecule oligopeptides isolated from Panax quinquefolium L. in mice. Food Funct. 9: 4266-4273. https://doi.org/10.1039/c7fo01658a
  32. Tang W, Zhang Y, Gao J, Ding X, Gao S. 2008. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. Biol. Pharm. Bull. 31: 2024-2027. https://doi.org/10.1248/bpb.31.2024
  33. Yeh TS, Chan KH, Mei CH, Liu JF. 2011. Supplementation with soybean peptides, taurine, Pueraria isoflavone, and ginseng saponin complex improves endurance exercise capacity in humans. J. Med. Food 14: 219-225. https://doi.org/10.1089/jmf.2010.1096
  34. Tan W, Yu KQ, Liu YY, Ouyang MZ, Yan MH, Luo R, et al. 2012. Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata. Int. J. Biol. Macromol. 50: 59-62. https://doi.org/10.1016/j.ijbiomac.2011.09.019
  35. Tang Y, Zhu ZY, Pan LC, Sun H, Song QY, Zhang Y. 2019. Structure analysis and anti-fatigue activity of a polysaccharide from Lepidium meyenii Walp. Nat. Product Res. 33: 2480-2489. https://doi.org/10.1080/14786419.2018.1452017
  36. Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, et al. 2010. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. J. Ethnopharmacol. 130: 421-423. https://doi.org/10.1016/j.jep.2010.05.027
  37. Yan T, Ren K, Bai X, Zhang C, Minhui LI. 2017. Anti-fatigue effects of Astragalus membranaceus (Fisch.) Beg. var. Mongholicus (Beg.) Hsiao from different genuine habitats on mice. Modern Chinese Medicine. 19: 924-928.
  38. Ge L, Chen A, Pei J, Zhao L, Fang X, Ding G, et al. 2017. Enhancing the thermostability of alpha-L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnol. 17: 21. https://doi.org/10.1186/s12896-017-0342-9
  39. Pei J, Wu T, Yao T, Zhao L, Ding G, Wang Z, et al. 2017. Biotransformation of ginsenosides Re and Rg1 into Rg2 and Rh1 by thermostable β-glucosidase from Thermotoga thermarum. Chem. Nat. Compounds 53: 472-477. https://doi.org/10.1007/s10600-017-2025-0
  40. Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, et al. 2015. Overexpression and characterization of a Ca(2+) activated thermostable beta-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. J. Ind. Microbiol. Biotechnol. 42: 839-850. https://doi.org/10.1007/s10295-015-1608-7
  41. Hai-Li, Cheng, Rui-Yu, Zhao, Tian-Jiao, Chen, et al. 2013. Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues. Mol. Cell. Proteomics 12: 2236-2248. https://doi.org/10.1074/mcp.M113.030619
  42. Li Q, Jiang Y, Tong X, Pei J, Xiao W, Wang Z, et al. 2020. Cloning and characterization of the beta-xylosidase from Dictyoglomus turgidum for high efficient biotransformation of 10-deacetyl-7-xylosltaxol. Bioorg. Chem. 94: 103357. https://doi.org/10.1016/j.bioorg.2019.103357
  43. Kirikyali N, Connerton IF. 2014. Heterologous expression and kinetic characterisation of Neurospora crassa beta-xylosidase in Pichia pastoris. Enzym. Microb. Technol. 57: 63-68. https://doi.org/10.1016/j.enzmictec.2014.02.002
  44. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, et al. 2014. Two xylose-tolerant GH43 bifunctional beta-xylosidase/alpha-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem.148: 381-387. https://doi.org/10.1016/j.foodchem.2013.10.062
  45. Tharakan B, Dhanasekaran M, Brown-Borg HM, Manyam BV. 2006. Trichopus zeylanicus combats fatigue without amphetamine-mimetic activity. Phytother. Res. PTR. 20: 165-168. https://doi.org/10.1002/ptr.1773
  46. Millet G, Lepers R, Lattier G, Martin V, Babault N, Maffiuletti N. 2000. Influence of ultra-long-term fatigue on the oxygen cost of two types of locomotion. Eur. J. Appl. Physiol. 83: 376-380. https://doi.org/10.1007/s004210000313
  47. Nejad AR, Gao Z, Moan T. 2014. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. Int. J. Fatigue 61: 116-128. https://doi.org/10.1016/j.ijfatigue.2013.11.023
  48. Uthayathas S, Karuppagounder SS, Tamer SI, Parameshwaran K, Degim T, Suppiramaniam V, et al. 2007. Evaluation of neuroprotective and anti-fatigue effects of sildenafil. Life Sci. 81: 988-992. https://doi.org/10.1016/j.lfs.2007.07.018
  49. Hu M, Du J, Du L, Luo Q, Xiong J. 2020. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. J. Funct. Foods 65: 103725. https://doi.org/10.1016/j.jff.2019.103725
  50. Kim JH, Cho HD, Won YS, Hong SM, Moon KD, Seo KI. 2020. Anti-fatigue effect of Prunus Mume vinegar in high-intensity exercised rats. Nutrients 12: 1205. https://doi.org/10.3390/nu12051205
  51. Gu B, Nakamichi N, Zhang WS, Nakamura Y, Kambe Y, Fukumori R, et al. 2009. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J. Neurosci. Res. 87: 2145-2156. https://doi.org/10.1002/jnr.22021
  52. Qu DF, Yu HJ, Liu Z, Zhang DF, Zhou QJ, Zhang HL, et al. 2011. Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma gondii SAG1 antigen. Vet. Parasitol. 179: 28-34. https://doi.org/10.1016/j.vetpar.2011.02.008
  53. Zhang Y, Zhang Z, Wang H, Cai N, Zhou S, Zhao Y, et al. 2016. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3beta pathway. Mol. Med. Rep. 14: 2778-2784. https://doi.org/10.3892/mmr.2016.5556
  54. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, et al. 2016. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J. Ginseng Res. 40: 203-210. https://doi.org/10.1016/j.jgr.2015.07.006
  55. Yang QY, Lai XD, Ouyang J, Yang JD. 2018. Effects of ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology 409: 144-151. https://doi.org/10.1016/j.tox.2018.08.010