• 제목/요약/키워드: optimal temperature

검색결과 4,571건 처리시간 0.036초

최적 반복 학습 제어기법을 이용한 RTP의 웨이퍼 온도균일제어 (Control of Wafer Temperature Uniformity in Rapid Thermal Processing using an Optimal Iterative teaming Control Technique)

  • 이진호;진인식;이광순;최진훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.358-358
    • /
    • 2000
  • An iterative learning control technique based on a linear quadratic optimal criterion is proposed for temperature uniformity control of a silicon wafer in rapid thermal processing.

  • PDF

작물생장모델을 이용한 상추의 온실 최적설정온도 탐색 알고리즘의 개발 (Development of an Algorithm for Searching Optimal Temperature Setpoint for Lettuce in Greenhouse Using Crop Growth Model)

  • 류관희;김기영;김희구;채희연
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.445-452
    • /
    • 1999
  • This study was conducted to develop a searching algorithm for optimal daily temperature setpoint greenhouse. An algorithm using crop growth and energy models was developed to determine optimum crop growth environment. The results of this study were as follows: 1. Mathematical models for crop growth and energy consumption were derived to define optimal daily temperature setpoint. 2. Optimum temperature setpoint, which could maximize performance criterion, was determined by using Pontryagin maximum principle. 3. Dynamic control of daily temperature using the developed algorithm showed higher performance criterion than static control with fixed temperature setpoint. Performance criteria for dynamic control models were with simulated periodic weather data and with real weather data, increased by 48% and 60%, respectively.

  • PDF

CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구 (Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms)

  • 김태연;이윤규
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석 (Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

경사기능재료 판의 최적설계 (Optimal Design of Functionally Graded Plates)

  • 나경수;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF

Desktop-LED lighting for Eye Muscle Movement by Adjusting the Light Illuminance and Color Temperature

  • Kim, Byoung-Chul;Kim, Seon-Jong;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.203-208
    • /
    • 2020
  • In this paper, we propose the design and implementation of a desktop LED stand and smart app that automatically adjusts color temperature and illuminance for optimal brightness and eye health by improving the structural problem of the LED stand. It is a tabletop LED stand that supports optimal brightness through color temperature control and heat transfer through infrared LED to relieve eye strain through blood circulation and muscle movement. The LED stand works with the smartphone to automatically adjust the optimal brightness and color temperature for the user's environment. In addition, the brightness of the infrared LED is adjusted to a living frequency of 4Hz to relax the eye muscles and reduce eye strain. This study implemented an effective measured data-based system of previous studies through the color temperature and illumination of LED lighting, and near-infrared rays, and presented meaningful results by conducting an experiment to prove the effect through subjects.

중앙냉방시스템의 준최적 설정점제어기법 구현에 관한 연구 (An Implementation for Near-Optimal Set Point Control for Central Cooling Systems)

  • 백승재;송재엽;안병천;주영덕;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.46-51
    • /
    • 2007
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air temperature and chilled water temperature. This study has been done by using LapVIEW program with PID control in order to analyze the central cooling system energy saving.

  • PDF

용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구 (Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters)

  • 정우창;김삼수;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

외기온도 변화특성을 고려한 중앙냉방시스템의 에너지 절감 최적제어에 관한 연구 (Optimal Control Strategies for Energy Saving of Central Cooling System with Outdoor Air Temperature Changes)

  • 박기태;안병천
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4260-4266
    • /
    • 2015
  • 본 연구는 외기의 변화에 대해 쾌적성을 유지함과 동시에 열원 및 공조설비의 총 전력소비량을 최소화할 수 있는 최적 제어방법에 대한 시뮬레이션 연구를 수행하였다. 최적제어방법은 외기 건구 및 습구온도 등의 환경변수가 변할 경우 냉각수온도, 급기온도, 냉수온도 등의 제어변수 최적 설정값들이 결정되도록 함으로써 환경 변화에 따라 최대 및 부분부하운전을 적절히 수행하도록 한 것이다. TRNSYS 프로그램을 이용하여 시스템을 모델링하였으며, 본 연구에서 제시한 최적제어방법과 고정 설정값으로 운전한 기존의 방식의 제어성능을 비교 분석하였다. 연구결과로는 본 연구에서 제시한 최적제어방법이 기존 운전방식에 비해 에너지 절감 성능이 양호함을 알 수 있었다.

막냉각이 적용된 액체로켓엔진의 비추력 최적조건 (Optimal Condition of Specific Impulse for a Liquid Rocket Engine with Film Cooling)

  • 조원국;박순영;설우석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.135-140
    • /
    • 2007
  • 막냉각이 적용된 액체로켓엔진의 비추력 최적조건을 분석하였다. 본 연구에서 구한 엔진의 비추력 성능을 문헌에 소개된 가스발생기 사이클 엔진의 개념설계와 비교하여 적절한 정확성을 가지는 것을 확인하였다. 비추력을 극대화할 수 있는 조건으로 최적의 막냉각 유량과 재생냉각 용량의 조합이 제시되었다. 추력이 증가될 경우, 막냉각 유량이 감소하고 연료펌프 차압은 증가한다. 터빈 입구온도 증가에 따라 최적 조건의 막냉각 유량과 연료펌프 차압이 증가한다. 코킹 온도 증가 역시 터빈 입구온도와 정성적으로 동일한 영향을 가진다.

  • PDF