• Title/Summary/Keyword: optimal temperature

Search Result 4,618, Processing Time 0.036 seconds

Quality Optimization in Red Pepper Drying (고추건조에 있어서 품질 최적화)

  • Lee, Dong-Sun;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.655-661
    • /
    • 1989
  • Optimal drying conditions consisting of air temperature and relative humidity were searched by the simulation-optimization technique for minimizing quality changes in red pepper drying. Optimized drying conditions were analysed in the viewpoint of quality change kinetics and effects of control variables on the state variables. Optimal drying conditions were nearly same in both cases for carotenoid maximization and browning minimization. In two staged optimized drying, relative humidity took a lower search limit of about 10%, and air temperature in the first stage was near the lower limit of $50^{\circ}C$ and in second stage increased to a higher temperature varying with total drying time and stage changing time. Response surface analysis of time invariable drying confirmed the location of the optimal point lying on the vertex of lower limit humidity and a lowest drying temperature which ensures to attain target moisture of 0.2g water/g dry solid. Two stage drying can attain the higher objective function of quality by 3-5% than time invariable drying for shorter total drying times.

  • PDF

A Basic Study on the Analysis Method of Thermography (Thermography의 분석방법에 관한 기초연구)

  • Lee, Hyuk-Jae;Park, Young-Jae;Oh, Hwan-Sup;Lee, Sang-Chul;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.9 no.2
    • /
    • pp.110-122
    • /
    • 2005
  • Background: The basic concept of thermographic interpretation is the thermologic equality of both side in normal person. But both sides diseases were limited diagnostic values by thermographic interpretation, and this interpretation does not apply to the case in thermal temperature of each part of body. Nevertheless, the measurement conditions are not standardized. So, for its clinical applications are extended, we think that the measurement conditions are considered the individual variations. Objectives: The purpose of this study is to examine the optimum conditions thermal temperature of the time period and region are not effected by internal and external variables. Methods: After the subjects took off their clothes, the filming were repeatedly five times made on duration of 5minutes during 20minutes. We selected nine regions around acupoints including Yin dang[印堂, HN1], Sugu[水溝, GV26], Ch’ondol[天突, CV22], Chonjung[CV17], Chung-wan[中脘, CV12], Ch’onch'u[天樞 S25], No-gung[勞宮, P8], and calculated based on the utility of R.O.I.(Region of Integer) in our system these points temperature. We measured the optimal time period and region that has little variation of thermal temperature. Results: The results shows that the optimal time period is 20minutes after undressed, and the optimal region is the region around acupoints including Sugu[水溝, GV26]. Conclusions: we obtained the measurement conditions were considered the individual variations. And also, this study offers basic sources for that the measurement conditions would be standardized. Furthermore, based on this results, we expect that clinical applications using thermography would be extended.

  • PDF

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Exploring the Optimal Stealth Material Emissivity for Infrared Camouflage across Diverse Temperature Surface Backgrounds (다양한 온도의 지표 배경에서 적외선 위장을 위한 최적의 스텔스 물질 방사율 탐구)

  • Jina Lee;Jae Won Hahn;Dongjun Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.228-234
    • /
    • 2024
  • Modern infrared-guided weapons detect and destroy targets by seeking and tracking the infrared radiation emitted by the target. By covering the target with a material that has low infrared emissivity, the infrared signal can be reduced to evade tracking. However, this method is effective only when the target is hotter than the background. Since the temperature of the background varies significantly between day and night, target signals with low emissivity at night can be captured by the optical systems of guided weapons due to signal contrast, as they are smaller than the background signals. In this study, the optimal emissivity for implementing infrared stealth for ground targets is calculated based on the temperature and emissivity of the background, as well as the temperature of the target. The size of the signal received by the optical systems of guided weapons, the contrast value of the image, and the lock-on range were calculated for target signals that vary depending on the emissivity of the target. The effectiveness of the optimal emissivity was demonstrated by thermal imaging computer simulations using COMSOL Multiphysics software.

Effects of Temperature and Salinity on Egg Development of Ascidiella aspersa (Ascidiacea, Phlebobranchia, Ascidiidae) (거친대추멍게(Ascidiella aspersa: Ascidiacea, Phlebobranchia, Ascidiidae)의 알 발육에 미치는 수온과 염도의 영향)

  • Kim, Donghyun;Kim, Min Kyung;Park, Juun;Kim, Dong Gun;Yoon, Tae Joong;Shin, Sook
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.232-240
    • /
    • 2018
  • This study was performed to investigate the effects of water temperature and salinity on the egg development and larval attachment of Ascidiella aspersa. The egg development and larval attachment were examined in 12 different water temperatures (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and $28^{\circ}C$) and two salinity conditions(30 and 34 psu). The hatching and developmental rates of A. aspersa showed a tendency to increase with increasing water temperature regardless of salinity and to decrease after the optimal water temperature range. The optimal water temperatures for the hatching and development of egg of A. aspersa were in the range of $20-22^{\circ}C$. The low threshold water temperature was not different between 1.5 and $1.8^{\circ}C$ at 30 and 34 psu, respectively. The attachment rate showed the optimal water temperature range of $16-22^{\circ}C$ irrespective of the salinity and the attachment time increased continuously with increasing water temperature. Experimental results showed that optimum development and survival temperature of the egg and larvae of A. aspersa were in the range of $20-22^{\circ}C$ regardless of the salinity conditions. The results can be used to predict the distribution and occurrence of A. aspersa, and to prevent economic damages caused by its spread.

Effect of water temperature on embryonic development and larval survival of an intertidal snail, Nassarius festivus (Powys, 1835)

  • Kang, Sin-Kil;Sung, Chan-Gyoung;Chung, Jiwoong;Park, Dong-Ho;Lee, Jong-Hyeon;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • This study was carried out to determine the optimal water temperature for the embryonic development and laboratory culture of larvae of an intertidal mud snail, Nassarius festivus. The embryos and hatched veliger larvae of N. festivus were incubated at six different temperatures (5, 10, 15, 20, 25 and $30^{\circ}C$). Developmental time for each stage decreased as water temperature increased. The elapsed time to develop to the veliger larva at 15, 20, 25 and $30^{\circ}C$ was 559, 155, 131 and 103 hrs, respectively. At 5 and $10^{\circ}C$, embryo developed to veliger larvae but failed to hatch out of the egg capsule. In contrast, all embryos successfully hatched in the temperature range from 15 to $30^{\circ}C$. The biological minimum temperature during the embryonic development of N. festivus was estimated to be $9.5{\pm}0.4^{\circ}C$. The cumulative water temperatures for blastula, gastrula and veliger stages were calculated as $111{\pm}84$, $486{\pm}185$, $1,164{\pm}72^{\circ}C$, respectively. Temperature also affected the larval survival. Five days after hatching, more than 84% of larvae survived at all experimental temperatures. However, survival began to decrease after 6 days. It was 0% at $30^{\circ}C$. Survival of larvae incubated for 8 days was higher at 15 and $20^{\circ}C$ than other experimental temperatures. We therefore suggest that the optimal range of temperature for embryonic development and larval survival of N. festivus is $15-20^{\circ}C$.

Optimal Synthesis Conditions of Zinc White (아연화의 최적 합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.659-665
    • /
    • 1996
  • Zinc white is mainly used as a mild astringent, protectant. and has weak antiseptic action. It is well known that the yield of zinc white produced is greatly affected by the syn thetic conditions such as the reactant concentration, reaction temperature, washing water temperature, mole ratio of reactants, and drying temperature, calcination temperature, etc. The purpose of this study is to investigate the optimal synthesis conditions of zinc white produced. A randomized complete block design suggested by G.E.P. Box and K.B. Wilson was applied for this purpose. Basic zinc carbonate was prepared by reacting zinc sulfate and sod. carbonate solution in this study. Zinc white comes when prepared by calcination of basic zinc carbonate. The optimum synthesis conditions of zinc white obtained from this study is as follows: 1) The reacting temperature range is: 92-100$^{\circ}C$, 2) The concentration of reactant solution is 23.6-27%, 3) The optimum mole-ratio: [ZnSO4]/[Na2CO3] is 1.74~1.96, 4) The washing water temperature is 36$^{\circ}C$, 5) The drying temperature range is 68-74$^{\circ}C$, 6) The calcination temperature is 600$^{\circ}C$. The outcome of DSC indicated a desolvation of basic zinc carbonate occurred at about 133.3$^{\circ}C$. The dehydration of the compound ceased at about 267.9$^{\circ}C$ and the decarboxylation ceased at about 379.9$^{\circ}C$. The physical and chemical properties of zinc white as medicine were studied by use of Volume Test.

  • PDF

Theoretical Conception of Synergistic Interactions

  • Kim, Jin-Kyu;Vladislav G. Petin
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • An increase in the overall biological effect under the combined action of ionizing radiation with another inactivating agent can be explained in two ways. One is the supposition that synergism may attribute to a reduced cellular capacity of damn-ge repair after the combined action. The other is the hypothesis that synergism may be related to an additional lethal or potentially lethal damage that arises from the interaction of sublesions induced by both agents. These sublesions ave considered to be in-effective when each agent is applied separately. Based on this hypothesis, a simple mathematical model was established. The model can predict the greatest value of the synergistic effect, and the dependence of synergy on the intensity of agents applied, as well. This paper deals with the model validation and the peculiarity of simultaneous action of various factors with radiation on biological systems such as bacteriophage, bacterial spores, yeast and mammalian cells. The common rules of the synergism aye as follows. (1) For any constant rate of exposure, the synergy can be observed only within a certain temperature range. The temperature range which synergistically increases the effects of radiation is shifted to the lower temperature fer thermosensitive objects. Inside this range, there is a specific temperature that maximizes the synergistic effect. (2) A decrease in the exposure rate results in a decrease of this specific temperature to achieve the greatest synergy and vice versa. For a constant temperature at which the irradiation occurs, synergy can be observed within a certain dose rate range. Inside this range an optimal intensity of the physical agent may be indicated, which maximizes the synergy. As the exposure temperature reduces, the optimal intensity decreases and vice versa. (3) The recovery rate after combined action is decelerated due to an increased number of irreversible damages. The probability of recovery is independent of the exposure temperature for yeast cells irradiated with ionizing or UV radiation. Chemical inhibitors of cell recovery act through the formation of irreversible damage but not via damaging the recovery process itself.

Study on Economic analysis and Dessemination Policy of Unused Energy (미활용에너지의 경제적 효과 및 보급지원방안 연구)

  • An, Hyung-Jun;Baek, Sung-Kwon;Heo, Eunn-Yeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.95-98
    • /
    • 2008
  • Temperature difference energy is a good energy source replacing the fossil fuels. In the study, we classified the temperature difference energy as 4 types by the source & using method. For the understanding economic property of temperature difference energy, we tried simle economic analysis. As the result, Pay back period of 4 case of the temperature difference energy are from 1.23 to 12.65 years. Major factors influenced economic effect are operation time and energy user distance from the temperature difference energy source. If we can select optimal capacity and look for more effient energy users, Temperature difference energy play a important role of replacing fossil energy. So, for dess emination of temperature difference energy, we suggest that temperature difference energy must be included in renewable energy. Applying the effective methods among various promotion program of renewable energy policy, utilization of temperature difference energy could be activated.

  • PDF

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng (추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링)

  • Gee Dong Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.857-867
    • /
    • 2023
  • In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.