DOI QR코드

DOI QR Code

Effects of Temperature and Salinity on Egg Development of Ascidiella aspersa (Ascidiacea, Phlebobranchia, Ascidiidae)

거친대추멍게(Ascidiella aspersa: Ascidiacea, Phlebobranchia, Ascidiidae)의 알 발육에 미치는 수온과 염도의 영향

  • Kim, Donghyun (Department of Life Science, Sahmyook University) ;
  • Kim, Min Kyung (Department of Life Science, Sahmyook University) ;
  • Park, Juun (Department of Life Science, Sahmyook University) ;
  • Kim, Dong Gun (Smith Liberal Arts College, Sahmyook University) ;
  • Yoon, Tae Joong (Institute of Marine Life Resources, Sahmyook University) ;
  • Shin, Sook (Department of Life Science, Sahmyook University)
  • 김동현 (삼육대학교 생명과학과) ;
  • 김민경 (삼육대학교 생명과학과) ;
  • 박주언 (삼육대학교 생명과학과) ;
  • 김동건 (삼육대학교 스미스교양대학) ;
  • 윤태중 (삼육대학교 해양생명자원연구소) ;
  • 신숙 (삼육대학교 생명과학과)
  • Received : 2018.05.15
  • Accepted : 2018.06.21
  • Published : 2018.06.30

Abstract

This study was performed to investigate the effects of water temperature and salinity on the egg development and larval attachment of Ascidiella aspersa. The egg development and larval attachment were examined in 12 different water temperatures (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and $28^{\circ}C$) and two salinity conditions(30 and 34 psu). The hatching and developmental rates of A. aspersa showed a tendency to increase with increasing water temperature regardless of salinity and to decrease after the optimal water temperature range. The optimal water temperatures for the hatching and development of egg of A. aspersa were in the range of $20-22^{\circ}C$. The low threshold water temperature was not different between 1.5 and $1.8^{\circ}C$ at 30 and 34 psu, respectively. The attachment rate showed the optimal water temperature range of $16-22^{\circ}C$ irrespective of the salinity and the attachment time increased continuously with increasing water temperature. Experimental results showed that optimum development and survival temperature of the egg and larvae of A. aspersa were in the range of $20-22^{\circ}C$ regardless of the salinity conditions. The results can be used to predict the distribution and occurrence of A. aspersa, and to prevent economic damages caused by its spread.

본 연구는 거친대추멍게(Ascidiella aspersa)의 알 발육과 유생 부착에 미치는 수온과 염도의 영향을 파악하고자 실시하였다. 거친대추멍게 알 발육과 유생 부착 실험은 12개의 수온 조건(6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, $28^{\circ}C$,과 2개의 염도 조건(30, 34 psu)에서 진행하였다. 거친대추멍게 알의 부화율과 발육률은 염도에 관계없이 수온이 높아짐에 따라 증가하는 경향을 보였으며 최적 수온 범위 이후 감소하는 경향을 보였으며 부화 및 발육을 위한 최적 수온은 $20{\sim}22^{\circ}C$의 범위를 보였다. 저온 발육임계수온은 30 psu와 34 psu에서 각각 $1.5^{\circ}C$$1.8^{\circ}C$로 큰 차이를 보이지 않았다. 부착률은 염도에 관계없이 $16{\sim}22^{\circ}C$의 최적 수온 범위를 보였으며 부착시간은 수온이 증가함에 따라 지속적으로 증가하였다. 결과적으로 거친대추멍게의 최적 발육 및 생존 수온은 염도 조건에 관계없이 $20{\sim}22^{\circ}C$ 범위를 보였다. 본 연구결과는 국내 양식장에서의 거친대추멍게에 의한 경제적 피해가 증가하고 있는 시점에서 거친대추멍게의 분포 및 발생시기를 예측하고 확산 방지 및 방제 방안을 구축하는 데 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Berrill NJ. 1928. The identification and validity of certain species of ascidians. J. Mar. Biol. Assoc. U.K. 15:159-175. https://doi.org/10.1017/S0025315400055600
  2. Carman MR, JA Morris, RC Karney and DW Grunden. 2010. An initial assessment of native and invasive tunicates in shellfish aquaculture of the North American east coast. J. Appl. Ichthyol. 26:8-11. https://doi.org/10.1111/j.1439-0426.2010.01495.x
  3. Carver CE, AL Mallet and B Vercaemer. 2006. Biological synopsis of the solitary tunicate Ciona intestinalis. Dartmouth, Nova Scotia: Bedford Institute of Oceanography pp. 1-52.
  4. Cohen BF, DR Currie and MA McArthur. 2000. Epibenthic community structure in Port Phillip Bay, Victoria, Australia. Mar. Freshw. Res. 51:689-702. https://doi.org/10.1071/MF00027
  5. Curtis L. 2005. Ascidiella aspersa. A sea squirt. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme [on-line]. Marine Biological Association of the United Kingdom. http://www.marlin.ac.uk/species/detail/1566.
  6. Feng D, C Ke, C Lu and S Li. 2010. The influence of temperature and light on larval pre-settlement metamorphosis: a study of the effects of environmental factors on pre-settlement metamorphosis of the solitary ascidian Styela canopus. Mar. Freshw. Behav. Physiol. 43:11-24. https://doi.org/10.1080/10236240903523204
  7. Hily C. 1991. Is the activity of benthic suspension feeders a factor controlling water quality in the Bay of Brest? Mar. Ecol. Prog. Ser. 69:179-188. https://doi.org/10.3354/meps069179
  8. Ikemoto T. 2005. Intrinsic optimum temperature for development of insects and mite. Environ. Entomol. 34:1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  9. Ikemoto T. 2008. Tropical malaria does not mean hot environments. J. Med. Entomol. 45:963-969. https://doi.org/10.1093/jmedent/45.6.963
  10. Ikemoto T, I Kurahashi and PJ Shi. 2013. Confidence interval of intrinsic optimum temperature estimated using thermodynamics SSI model. Insect Sci. 20:420-428. https://doi.org/10.1111/j.1744-7917.2012.01525.x
  11. Inglis GJ, N Gust, I Fitridge, O Floerl, C woods, M Kospartov and GD Fenwick. 2008. Port of Lyttelton: second baseline survey for non-indigenous marine species. MAFBNZB. Report No:ZBS2000-04.
  12. Kanamori M, K Baba, M Natsuike and S Goshima. 2017. Life history traits and population dynamics of the invasive ascidian, Ascidiella aspersa, on cultured scallops in Funka Bay, Hokkaido, northern Japan. J. Mar. Biol. Assoc. U.K. 97:387-399.
  13. Knaben N. 1952. Development of the larvae of Ascidiella aspersa Mull. At different salinities and temperatures, the dependence of the distribution of this species upon the hydrographic circumstances, by Nils Knaben. J. Dybwad. pp. 1-24.
  14. Kott P. 1985. The Australian Ascidiacea part 1, Phelbobranchia and Stolidobranchia. Mem. Qd. Mus. 23:1-440.
  15. Lee C, MW Park, CS Lee, SK Kim and WK Kim. 2009. Effect of temperature and salinity on development of sea peach Halocynthia aurantium. J. Environ. Sci. Int. 18:1171-1179. https://doi.org/10.5322/JES.2009.18.10.1171
  16. Mackenzie AB. 2011. Biological synopsis of the European sea squirt (Ascidiella aspersa). Department of Fisheries and Oceans. Burlington, ON, Canada p. 15.
  17. Millar RH. 1952. The annual growth and reproductive cycle in four ascidians. J. Mar. Biol. Assoc. U.K. 31:41-61. https://doi.org/10.1017/S0025315400003672
  18. Nagabhushanam AK and P Krishnamoorthy. 1992. Occurrence and biology of the solitary ascidian Ascidiella aspersa in Tamil Nadu coastal waters. J. Mar. Biol. Assoc. India. 34:1-9.
  19. Niermann-Kerkenberg E and DK Hofmann. 1989. Fertilization and normal development in Ascidiella aspersa (Tunicata) studied with Nomarski optics. Helgol. Mar. Res. 43:245-258.
  20. Park JU, TJ Lee, DH Kim, PJ Kim, DG Kim and S Shin. 2017. Monitoring and impact of marine ecological disturbance causing organisms on an oyster and sea squirt farm. J. Environ. Biol. 35:677-683. https://doi.org/10.11626/KJEB.2017.35.4.677
  21. Park YJ, YG Rho, JH Lee and JM Lee. 1991. Studies on spawning and seed collection of sea squirt, Halocynthia roretzi (Drasche). Bull. Natl. Fish. Dev. Agency. 45:165-173.
  22. Picton BE and CC Morrow. 2016. Encyclopedia of marine life of Britain and Ireland. http://www.habitas.org.uk/marinelife.
  23. Pirie BJS and MV Bell. 1984. The localization of inorganic elements, particularly vanadium and sulphur, in haemolymph from the ascidians Ascidia mentula (Muller) and Ascidiella aspersa (Muller). J. Exp. Mar. Biol. Ecol. 74:187-194. https://doi.org/10.1016/0022-0981(84)90086-8
  24. Pyo JY, TJ Lee and S Shin. 2012. Two newly recorded invasive alien ascidians (Chordata, Tunicata, Ascidiacea) based on morphological and molecular phylogenetic analysis in Korea. Zootaxa 3368:211-228.
  25. SAS Institute. 2004. SAS user's guide version 9 (2nd ed.). Cary North Carolina, SAS Institute Inc.
  26. Schoolfield RM, PJH Sharpe and CE Magnuson. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88:719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  27. Sharpe PJH and DW DeMichele. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64:649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  28. Thiyagarajan V and PY Qian. 2003. Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). J. Exp. Mar. Biol. Ecol. 290:133-146. https://doi.org/10.1016/S0022-0981(03)00071-6