• Title/Summary/Keyword: optimal structural design

Search Result 1,133, Processing Time 0.027 seconds

The Inhibition of Epileptogenesis During Status Epilepticus by Ginsenosides of Korean Red Ginseng and Ginseng Cell Culture (Dan25)

  • N.E., Chepurnova;Park, Jin-Kyu;O.M., Redkozubova;A.A., Pravdukhina;K.R., Abbasova;E.V., Buzinova;A.A., Mirina;D.A., Chepurnova;A.A., Dubina;U.A., Pirogov;M., De Curtis;L., Uva;S.A., Chepurnov
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.159-174
    • /
    • 2007
  • Pharmacology of Korean Red ginseng gives us unique possibility to develop new class of antiepileptic drugs today and to improve one's biological activity. The chemical structures of ginsenosides (GS) have some principal differences from well-known antiepileptic new generation drugs. The antiepileptic effect of GS was also demonstrated in all models of epilepsy in rats (young and adult), which have studied, in all models of epilepsy including status epilepticus (SE), induced by lithium - pilocarpine. In our experiments in rats new evidences on protective effects were exerted as a result of premedication by GS. Pre-treatment of several GS could induce decrease of the seizures severity and brain structural damage (by MRI), neuronal degeneration in hippocampus. Wave nature of severity of motor seizures during convulsive SE was observed during lithium-pilocarpine model of SE in rats (the first increase of seizures was 30 min after the beginning of SE and the second - 90 min after. The efficacy of treatment on SE by ginsenoside as expected was observed after no less 3 weeks by daily GS i.p. administration. It is blocked SE or significantly decrease the severity of seizures during SE. The implication of presented data is that combination of ginsenosides from Korean Red ginseng and ginseng cell culture Dan25 that could be applied for prevention of epileptical status development. However, a development of optimal ratio of different ginsenosides $(Rb_1$ Rc, Rg, Rf,) should consummate in the new antiepileptic drug development.

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

Design and Implementation of A Medical Image Guided System for Vertebroplasty (척추성형술을 위한 의료 영상 시스템의 설계 및 개발)

  • Tack, Gye-Rae;Lee, Sang-Bum;Lee, Sung-Jae
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.503-508
    • /
    • 2003
  • Since surgical treatment of the spine should overcome neurological compromises, the operative procedures need to be carefully planned and carried out with high degree of precision. Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate relief of pain. However, failures of treatment due to excessive PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that the control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. Therefore, clinical success of vertebroplasty can be dependent on the volume of PMMA injection for a given patient. In this study, the optimal volume of PMMA injection for vertebroplasty was predicted based on the image analysis of a given patient.

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF

Predictive Model of the Intent of Work-Family Multiple-Role Planning among Female University Students: Integration of Social Cognitive Career Theory and Theory of Planned Behavior (여대생의 일가정 다중역할계획의도 예측모형 연구: 사회인지진로이론과 계획행동이론의 통합)

  • Kim, Jieun;Park, Mee Sok
    • Human Ecology Research
    • /
    • v.58 no.4
    • /
    • pp.539-560
    • /
    • 2020
  • This study presents work-family multiple-role planning by female university students as a new approach to worklife balance. Accordingly, this study examines university years as a key time frame during which students establish their career paths. This study integrates the social cognitive career theory and the planned behavior theory to design and evaluate a model that explains the work-family multiple-role planning process; in addition, it develops an optimal model to predict the intentions of female university students in work-family multiple-role planning. This study has conducted a structural survey with 500 female university students. After inspecting the data, the responses of 435 participants were used in the data analysis (SEM) with SPSS 21.0 and AMOS 21.0. The findings include the following. First, suitability of predictive model presents a satisfying fit. The major factors in this study's model (parental support, subjective norms, attitudes toward multiple-role planning, career decision self-efficacy, and outcome expectations) are verified as direct and indirect predictors of the work-family multiple-role planning intent of female university students. Second, the strongest predictive factor for the work-family multiple-role planning intent is the social environment factor (subjective norms), indicating that the influence of social pressure on intent is relatively large. The predictive model formulated under this study's integrated theoretical framework supplements existing research that focused on attitudes toward multiple-role planning as well as provides a more profound theoretical foundation on which work-family multiple-role planning behaviors can be better understood.

Relationship Analysis of Break-up Mode and Heat Transfer of Micro-Speaker Diaphragm (마이크로 스피커 진동판에 대한 분할진동 모드와 열전달의 관계 분석)

  • Kim, Hyun-Kab;Kim, Hie-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.333-336
    • /
    • 2017
  • A speaker diaphragm generates a divided vibration. The influence of the break-up mode is sufficient to cause a shape change in the diaphragm. In this paper, is widely used in ultra-thin multi-media devices, including smart phones is the advance guard of the IT sector, the micro-speakers and its target. Micro-speakers are different from general speakers. The plate has structural form and space constraints. In particular, they utilize a closed-type drive space. It is difficult to provide cooling for the auxiliary suspension structure because of the heat generated in the moving coil. The present study considered the relationship between the break-up mode and the heat transfer of the diaphragm. An experiment was conducted in two stages to compare the embodiment of the break-up mode and heat transfer in a certain frequency range. The changes in the heat were determined through measurements and thermal imaging of the break-up mode. The break-up mode tendency of the diaphragm could be rapidly predicted based on the imaging results using the thermal imaging camera. This will help in the optimal design of micro-speakers.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.