• Title/Summary/Keyword: optimal sequential method

Search Result 215, Processing Time 0.024 seconds

A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments (실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구)

  • Lee, Dong Heon;Lee, Mi Lim;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

A Sequential Indexing Method for Multidimensional Range Queries (다차원 범위 질의를 위한 순차 색인 기법)

  • Cha Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.254-262
    • /
    • 2005
  • This paper presents a new sequential indexing method called segment-page indexing (SP-indexing) for multidimensional range queries. The design objectives of SP-indexing are twofold:(1) improving the range query performance of multidimensional indexing methods (MIMs) and (2) providing a compromise between optimal index clustering and the full index reorganization overhead. Although more than ten years of database research has resulted in a great variety of MIMs, most efforts have focused on data-level clustering and there has been less attempt to cluster indexes. As a result, most relevant index nodes are widely scattered on a disk and many random disk accesses are required during the search. SP-indexing avoids such scattering by storing the relevant nodes contiguously in a segment that contains a sequence of contiguous disk pages and improves performance by offering sequential access within a segment. Experimental results demonstrate that SP-indexing improves query performance up to several times compared with traditional MIMs using small disk pages with respect to total elapsed time and it reduces waste of disk bandwidth due to the use of simple large pages.

Design and Analysis of Computer Experiments with An Application to Quality Improvement (품질 향상에 적용되는 전산 실험의 계획과 분석)

  • Jung Wook Sim;Jeong Soo Park;Jong Sung Bae
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.83-102
    • /
    • 1994
  • Some optimal designs and data analysis methods based on a Gaussian spatial linear model for computer simulation experiments are considered. For designs of computer experiments, Latin-hypercube designs and some optimal designs are combined. A two-stage computational (2-points exchange and Newton-type) algorithm for finding the optimal Latin-hypercube design is presented. The spatial prediction model which was discussed by Sacks, Welch, Mitchell and Wynn(1989) for computer experiments, is used for analysis of the simulated data. Moreover, a method of contructing sequential (optimal) Latin-hypercube designs is considered. An application of this approach to the quality improvement and optimization of the integrated circuit design via the main-effects plot and the sequential experimental strategy is presented.

  • PDF

Kalman Filter Based Optimal Controllers in Free Space Optics Communication

  • Li, Zhaokun;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.368-380
    • /
    • 2016
  • There is no doubt that adaptive optics (AO) is the most promising method to compensate wavefront disturbance in free space optics communication (FSO). In order to improve the performance of the AO system described by discrete-time linear system model with time-delay and implicit phase turbulent model, new controllers based on a Kalman filter and its extensions are proposed. Based on the standard Kalman filter, we propose a fading memory filter to deal with the ruleless strong interference; sequential and U-D filters are applied to reduce implementation complexity for the embedded controllers. Theoretical analysis and the numerical simulations show that the proposed fading memory filter can upgrade the performance for AO systems in consideration of the unforeseen strong pulse interference, and the sequential and U-D filters perform well compared with a Kalman filter.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

Kinematic/dynamic optimal design of a Stewart Platform mechanism (스튜워트 플랫폼 메카니즘의 기구학적/동역학적 최적설계)

  • Yi, Byung-Ju;Kim, Whee-Kuk;Huh, Kum-Kang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1996
  • This work deals with the kinematic and dynamic optimal design of a six degree-of-freedom Stewart Platform mechanism, which is actuated by six prismatic cylinfers. Composite design index is employed to deal with multi-criteria based design in a systematic manner, and a sequential design method is suggested, in which the results from the kinematic optimization are employed in the following dynamic optimization.

  • PDF

A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module (정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구)

  • Ahn, Tae-Young;Choe, Hyun-Su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • In this paper, results of produced PCU(Power Control Unit) prototype was showed by suggesting and maintaining optimal operation status which let the three functional modules automatically operate with its necessity by prioritizing operation process. In order to validate effectiveness of the suggested method, we produced a test PCU and examined the results. PCU consists of S3R(Sequential Switching Shunt Regulator), BCR(Battery Charge Regulator), and BDR(Battery Discharge Regulator): converting photovoltaic power into constant voltage at linked bus voltage; storing dump power in the battery which is an auxiliary energy storage device; and supplying power charged in battery to the load. To maintain its high reliability and optimal condition of these three power conversion modules, each module operates in parallel and stable bus voltage is required to be retained at all-time due to the nature of power supply for satellite.

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

Optimal feature extraction for normally distributed multicall data (가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF