• Title/Summary/Keyword: optimal sequential method

Search Result 219, Processing Time 0.021 seconds

A robust method for response variable transformations using dynamic plots

  • Seo, Han Son
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.463-471
    • /
    • 2019
  • The variable transformations are useful ways to guarantee the functional relationships in the model. However, the presence of outliers may undermine the accuracy of transformation. This paper deals with response transformations in the partial linear models under the existence of outliers. A new procedure for response transformation and outliers detection is proposed. The procedure uses a sequential method for identifying outliers and dynamic graphical methods for an appropriate transformation. The graphical tools make it possible to catch diagnostic information by monitoring the movement of points in the data. The procedure is illustrated with several examples. Examples show that visual clues regarding the optimal transformation, the fittness of the model and the outlyness of the observations can be checked from the series of plots.

Enhanced deep soft interference cancellation for multiuser symbol detection

  • Jihyung Kim;Junghyun Kim;Moon-Sik Lee
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.929-938
    • /
    • 2023
  • The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.

Development of GUI Environment Using a Commercial Program for Truss Structure of Approximate Optimization (상용프로그램을 사용한 트러스 구조물 근사최적설계 GUI 환경 개발)

  • 임오강;이경배
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.431-437
    • /
    • 2003
  • In this paper, an approximate optimization program based on GUI(graphic user interface) environment is developed. This program is coded by using Fortran and Visual basic. Fortran is used to Progress approximate optimization process. Visual basic is used to make user environment for user to use conveniently. Inside of this program, it uses two independent programs. One is commercial program, ANSYS, and the other is optimization program, PLBA(Pshenichny-Lim-Belegundu Arora). The former is used to obtain approximate equation of stress and displacement of a structure. The latter is used to solve approximate optimization. This algorithm uses second-order information of a function and active set strategy. This program is connecting ANSYS and PLBA. And it progress the process repeatedly until it obtain optimum value. As a method of approximate optimization, sequential design domain(SDD) is introduced. SDD starts with a certain range which is offseted from midpoint of an initial design domain and then SDD of the next step is determined by optimal point of a prior step.

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.

Design and Analysis of Efficient Operation Sequencing in FMC Robot Using Simulation and Sequential Patterns (시뮬레이션과 순차 패턴을 이용한 FMC 로봇의 효율적 작업 순서 설계 및 분석)

  • Kim, Sun-Gil;Kim, Youn-Jin;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2021-2029
    • /
    • 2010
  • This paper suggested the method to design and analyze FMC robot's dispatching rule using the Simulation and Sequential Patterns. To do this, first of all, we built FMC using simulation and then, extracted signals that facilities call a robot, saved it as the log type. Secondly, we built robot's optimal path using the Sequential Pattern Mining with the results of analyzing the log and relationship between machine and robot actions. Lastly, we adapted it to the A corp.'s manufacturing line for verifying its performance. As a result of applying the new dispatching rule in FMC, total throughput and total flow time decrease because of decreasing material loss time and increasing robot utility. Furthermore, because this method can be applied for every manufacturing plant using simulation, it can contribute to advance total FMC efficiency as well.

Desorption Kinetics and Removal Characteristics of Pb-Contaminated Soil by the Soil Washing Method: Mixing Ratios and Particle Sizes

  • Lee, Yun-Hee;Oa, Seong-Wook
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • Pb-contaminated soil at a clay shooting range was analyzed by the sequential extraction method to identify metal binding properties in terms of detrital and non-detrital forms of the soil. Most of the metals in the soils existed as non-detrital forms, exchangeable and carbonate-bound forms, which could be easily released from the soil by a washing method. Therefore, the characteristics of Pb desorption for remediation of the Pb-contaminated soil were evaluated using hydrochloric acid (HCl) by a washing method. Batch experiments were performed to identify the factors influencing extraction efficiency. The effects of the solid to liquid (S/L) ratio (1:2, 1:3, and 1:4), soil particle size, and extraction time on the removal capacity of Pb by HCl were evaluated. Soil samples were collected from two different areas: a slope area (SA) and a land area (LA) at the field. As results, the optimal conditions at 2.8 to 0.075 mm of particle size were 1:3 of the S/L ratio and 10 min of extraction time for SA, and 1:4 of the S/L ratio and 5 min of extraction time for LA. The characteristics of Pb desorption were adequately described by two-reaction kinetic models.

Hull Form Generation of Minimum Wave Resistance by a Nonlinear Optimization Method (비선형 최적화 기법에 의한 최소 조파저항 선형 생성)

  • Hee-Jung Kim;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.11-18
    • /
    • 2000
  • This paper is concerned with the generation of an optimal forward hull form by a nonlinear programming method. A Rankine source panel method based on the inviscid and potential flow approximation is employed to calculate the wave-making resistance and SQP method is also used for the optimization. The hull form is represented by a spline function. The forward hull form of a minimum wave resistance with the given design constraints is generated. In addition, the forward hull form of a minimum total resistance by considering the frictional resistance together with an empirical form factor is produced and compared with the former result.

  • PDF

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

A study on improvement of painting quality through a de-painting phenomenon of KUH-1 tail blade (한국형 기동헬기 꼬리 날개 디페인팅 현상을 통한 도장 품질 향상에 관한 연구)

  • Chang, In-Ki;Kim, Young-Jin;Seo, Hyun-Soo;Jeon, Boo-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.325-338
    • /
    • 2014
  • Purpose: The purpose of this study was to explain de-painting phenomenon of KUH-1 tail blade and to propose useful solution of it by test. The proposed solution was evaluated by real flight, and then it applied to mass product to improve the paint qual ity of KUH-1 tail blade. Methods: This study investigated an adhesive ability of primer following surface sanding condition. The cross cut and scratch test were conducted to evaluate the adhesive strength. And the water flow test was designed to simulate a real flight condition under rain. Through water flow test, an optimal condition of tail blade to prevent a de-painting phenomenon was deduced. Finally, the improvement method was evaluated by real flight under rain. Results: The results of this study are as follows; The sequential polishing was most excellent method in primer painting quality. The results of test including cross cut, scratch and water flow showed that MIL-DTL-53039 paint with epoxy primer has excellent adhesive ability. To proof the effect of improvement, a real flight during a rain condition was conducted. Finally, the comparison between original and improved configuration was conducted. Conclusion: The painting quality of KUH-1 tail blade was improved through deriving an optimal painting condition. In detail, a condition of optimal sanding and a sort of primer and paint was showed. Finally, the reliability of tail blade was guaranteed through improving the quality of painting.