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A robust method for response variable transformations
using dynamic plots
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Abstract

The variable transformations are useful ways to guarantee the functional relationships in the model. How-
ever, the presence of outliers may undermine the accuracy of transformation. This paper deals with response
transformations in the partial linear models under the existence of outliers. A new procedure for response trans-
formation and outliers detection is proposed. The procedure uses a sequential method for identifying outliers and
dynamic graphical methods for an appropriate transformation. The graphical tools make it possible to catch di-
agnostic information by monitoring the movement of points in the data. The procedure is illustrated with several
examples. Examples show that visual clues regarding the optimal transformation, the fittness of the model and
the outlyness of the observations can be checked from the series of plots.
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1. Introduction

A statistical model is often characterized by its mean function. However, often the correct form for the
mean function does not follow the assumed one. A transformation of variables is needed to achieve an
assumed mean function in the transformed scale. We consider a partial linear model in regards to the
problem of transformation. A standard linear regression model is a basic tool for analyzing statistical
data and is widely used due to its simplicity. In some problems the linear relationship between the
response and all covariates are not known. A partial linear model is more flexible by incorporating the
nonlinear functional relationship in a general linear model. The model with response transformations
in partial linear model is given as,

YO = XB + h(Z) + &, (1.1)

where Y@ is a transformed response variable, A is a transformation coefficient, X is a matrix of
explanatory variables, 4 is a curvature function of a explanatory variable Z and ¢ is an error term. The
transformation family used most is the scaled power family defined for positive ¥ by Y = (Y4-1)/1
when 4 # 0 and YO = log(Y), when 4 = 0. Seo (2009) and Seo and Yoon (2009) suggested a
graphical method for capturing the curve and estimating the transformation coefficient in the model
(1.1).

In this paper we deal with response transformations in the partial linear models under the existence
of outliers. The existence of outliers in the data is a common problem in a statistical analysis. Many
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approaches for detecting multiple outliers are suggested in a linear model, for example sequential pro-
cedures (Hadi and Simonoff, 1993), high-breakdown methods (Rousseeuw, 1984; Yohai, 1987) and
forward searches (Atkinson, 1994). In the discussion of outliers, the difference between outliers and
influential observations in estimating transformations should be understood. An influential observa-
tion is one whose deletion has a large effect on the transformation estimates. Cheng (2005) suggested
a robust method for response transformation against influential observations in a linear model. They
used the least trimmed squares estimator and the trimmed likelihood estimator. An outlier is an ob-
servation that diverges from an overall pattern formed by the transformed data. Seo er al. (2012)
suggested several procedures for detecting outliers in the process of response transformation in a lin-
ear model. Seo and Yoon (2013) used maximum trimmed likelihood estimators to overcome the bad
effects caused by outliers in fitting a partial linear model with response transformation.

This paper presents a graphical procedure for a robust transformation using an outlier detection
method and dynamic plots. Section 2 suggests a dynamic graphical method for the transformation and
the outlier detection in a partial linear model. The method involves augmented partial residual plot for
specifying the curvature and a sequential procedure for detecting outliers. Section 3 provides several
examples with artificial data and real data to illustrate the suggested method. Section 4 contains some
concluding remarks.

2. A robust method with dynamic plots

Determining the coefficient of optimal response transformation in a partial linear model is difficult to
solve analytically. We suggest an exploratory procedure of observing related plots for many transfor-
mations. Plots for each transformation need the estimation of a partial linear model and the detection
of outliers. Graphical methods are used for the estimation of a partial linear model. Many graphi-
cal methods are suggested to specify the curvature in a partial linear model including added variable
plot (Chamber et al., 1983, p.272), partial residual plot (Larsen and McCleary, 1972; Weisberg, 2005),
augmented partial residual plot (Mallows, 1986) and CERES plot (Cook, 1993). An augmented partial
residual plot is known more effective than other graphical methods including inverse response plots
(Cook and Weisberg, 1994). Augmented partial residual plots are constructed based on the linear
model with X, Z and quadratic terms of Z as covariates, Y = py + Xp; + ¢1Z + ¢,Z> + error. The coeffi-
cients of the model are estimated by minimizing a convex objective function L, L, = (09, o1, $1, $2) =
iy Lyi—po—xip1 —zif —ziz 1¢)/n. Augmented partial residual plot for Z is the plot of e+®, Z+d, 2>
versus Z. Augmented partial residual plots are expected to depict the curvature / better than partial
residual plots which are constructed from the linear model Y = py + Xp;¢Z + error. Another graph-
ical method, CERES plots use a model Y = ay + Xa;E(X|Z)b + error. CERES plots are a larger
class of plots including partial residual plot and augmented partial residual plot as special ones. The
performance of CERES plots depends on the accuracy of the estimation of E(X|Z).

With a fixed transformation and the estimated curvature in the model (1.1) an outlier detection
method designed for linear models can be applied. In this paper a sequential procedure proposed by
Hadi and Simonoff (1993) is used, which consists of three steps , constructing a clean set, calculating
residuals and testing for outliers. For the construction of initial clean subset Hadi and Simonoff (1993)
suggested two methods. The first method fits the model of p explanatory variables with p observations
and selects a new set of (p + 1) observations corresponding to the (p + 1) smallest residuals. An initial
clean is obtained by repeating the process until to get int[(n + p — 1)/2] observations. The second
method uses the backward-stepping approach (Rosner, 1975; Simonoff, 1984, 1988) applying single
linkage clustering (Hartigan, 1981). Hadi and Simonoff (1993) showed that the first method was
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Figure 1: Dynamic plots: An augmented partial residual plot, a forward response plot and a lambda control-
slider.

more effective. The main algorithm for detecting outliers is as follows. Given a clean subset M of
size s a diagnostic measure d; are calculated, which are the internally studentized residuals for the
observations included in a clean subset and the scaled prediction errors for others.
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The set of outlier candidates is determined by the absolute value of d;, |d;|. If we let |d|; be
the j order statistic of the d ; in ascending order the outlier candidates are the (n — s) observations
corresponding to |d|(s+1y, - - - » Id|n). The test for outlyingness is done by comparing the statistic |d|.1)
with #(4/2¢s+1),5-k)- If the null hypothesis is rejected a new clean subset that consists of the first (s + 1)
ordered observations is formed and the process is repeated.

For an exploratory analysis to figure out the transformation, the curvature and outliers simulta-
neously animation techniques in plotting is usually used (Seo and Yoon, 2009). We use augmented
partial residual plots and forward response plots which are animated as A changes. The plots contain
diagnostic measures calculated from the data excluding detected outliers. Visual clues regarding the
fittness of the model and the outlyingness of the observations are checked from the series of plots to
determine the optimal transformation. The suggested procedure is summarized as follows.

- Fix a value of 1 and estimate i(Z) by an augmented partial residual plot.

- Use Hadi-Simonoff ’s procedure with Y, X, and h(z) to identify outliers.

Calculate the fitted values Y@ with a clean subset of ¥ @ X, and E(z\)

Draw an augmented partial residual plot and a forward response plot (Y™ vs. Y™) in which clean
cases and outliers are marked with different symbols.

- Change A smoothly and check the fitness of the model from a forward response plot and capture a
curve h(Z) from augmented partial residual plot.
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Table 1: Generated data from the model (3.1)

Case # X X Z Y Case # X X Z Y

1 5.54 5.11 —-1.00 123059 26 5.30 4.35 0.02 16334
2 5.05 5.98 -0.96 154554 27 5.37 4.34 0.06 17862
3 4.12 6.38 -0.92 85194 28 5.15 4.56 0.10 17025
4 4.55 7.61 -0.88 367573 29 5.39 4.46 0.14 18966
5 4.44 4.88 -0.84 24570 30 5.01 5.03 0.18 24532
6 3.99 4.55 —-0.80 9388 31 8.06 4.76 0.22 368547
7 5.57 5.13 -0.76 76244 32 4.25 4.31 0.27 5744
8 6.21 5.31 -0.71 172704 33 6.00 498 0.31 65102
9 4.56 4.66 -0.67 15879 34 4.22 5.55 0.35 19864
10 5.57 341 -0.63 11464 35 6.77 3.95 0.39 55872
11 4.50 5.84 -0.59 44631 36 5.00 5.00 0.43 24839
12 4.39 495 -0.55 15226 37 4.49 5.33 0.47 22878
13 445 3.73 -0.51 4719 38 3.76 6.51 0.51 38361
14 6.04 6.61 -0.47 392211 39 4.81 5.19 0.55 29470
15 5.03 3.70 -0.43 7701 40 4.52 4.45 0.59 10586
16 4.21 5.70 -0.39 24558 41 5.64 5.51 0.63 100145
17 4.77 5.06 -0.35 21159 42 5.74 1.80 0.67 2926
18 4.05 5.67 -0.31 17971 43 4.89 5.64 0.71 60870
19 6.42 4.14 -0.27 44608 44 542 5.67 0.76 101969
20 4.97 4.19 -0.22 10798 45 6.70 6.43 0.80 984019
21 4.18 5.89 -0.18 24561 46 4.20 4.48 0.84 12227
22 5.13 5.29 -0.14 30737 47 3.38 4.32 0.88 4709
23 3.62 5.39 -0.10 7731 48 6.27 4.70 0.92 133900
24 6.09 5.68 —-0.06 132488 49 4.28 3.73 0.96 7554
25 5.93 347 -0.02 11718 50 4.45 6.24 1.00 122214

- Stop at which the clean cases in a forward response plot show a linear trend.

During the procedure the curve h(Z) is not estimated again with a clean subset because h(Z) does not
depends on the existence of outliers under the mean-shifted outlier model. For performing suggested
procedure customized dynamic plots are coded by using XLISP-STAT (Tierney, 1990).

Figure 1 shows an augmented partial residual plot and a forward response plot and a slider for
changing A from —2 to 2. Variables in the plot are standardized so all observations to be between —1
and 1. Outliers are symbolized with solid dot (e) in two plots and a correlation coefficient of variables
in the forward response plot are also displayed for reference.

3. Examples

Example 1. Artificial data without outliers
A dataset shown in Table 1 is artificially generated according to the model,

Y =exp(Xi+Xo+ 2% + ), (3.1)

where variables X; and X, follows the bivariate normal distribution ( x; x; )7 ~ MVN ((g) ((1) (1))),
Z has equally spaced values between —1 and 1 and ¢ is a normal random variate with mean 0 and
standard deviation 0.05. Figure 2 contains dynamic plots for selected values of 4. Some plots reflect
the occurrence of a swamping effect.

For example, when 4 = 0.5 four observations 4, 14, 31, 45 are detected as outliers. Dynamic
forward response plots after removing detected outliers indicate that when A = 0O there is no outlier in
the data and the model fits well (R* = 0.98%). This results coincides with the model (3.1) from which
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(a) Augmented partial residual plots
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Figure 2: Dynamic plots with A = —1,0,0.5, 1 (from Ieft).

the dataset is generated. We also see that when 4 = 0 the augmented partial residual plot captures
curvature function successfully.

Example 2. Artificial data with outliers

Some observations in the Table 1 are modified to include outliers. Three outliers are planted
at the 10", 20", and 30" observations by changing their y values as 64, 98, 531 respectively. For
this contaminated data dynamics plots are constructed with or without performing a test for outliers.
Figure 3 contains forward response plots for several values of A. Forward response plots without
performing outlier-test suggest the optimal transformation as 4 = 0.5 wrongly. But the forward
response plot with outlier-test shows a strong linear trend (R*> = 0.97%) when A = 0 and detected the
10™, 20" and 30" observations as outliers.

Exzample 3. A real data (Nitrogen in lakes data)

Nitrogen in lakes data (Atkinson and Riani, 2000, p.297) include 29 observations on the amount
of nitrogen in US lakes with the variables, X;: average influent nitrogen concentration, X,:water re-
tention time and Y: mean annual nitrogen concentration. Stromberg (1993) and Atkinson and Riani
(2000) analyzed data using the following nonlinear model and diagnosed the 10" and the 23"/ obser-
vations as outliers.

Xxy; )
yi=——+¢g, i=1,...,20.
L+ Bry;

Stromberg (1993) fit the model using least median of squares estimate and MM estimate. The fitted
model yielded R?> = 0.667 after removing the points 10 and 23 as outliers.

We fit a model (1.1) and conducted the dynamic graphical procedure. Augmented partial response
plots and forward response plots are shown in Figure 4. Judging from forward response plots the
candidates of optimal estimate of A is 1 or 0. When A = 1 the forward response plot shows a strong
linear relationship and the model detected more than 15 points as outliers. When 4 = 0, however,



468 Han Son Seo

(a) Forward response plots without performing outliers-test
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(b) Forward response plots with performing outliers-test

(c) Augmented partial residual plots corresponding to forward response plots in (b)

Figure 3: Dynamic plots with A = —0.5,0,0.5, 1 (from Ieft).

only two points 10, 23 are detected as outliers and the estimated model fits the data well (R> = 0.70?).
R? is lower when A = 0, however, the log-transformation is more appropriate because more than one
third observations in the data is too much to exclude. A linear model can also be used for the analysis
of nitrogen in lake data since the curve in the partial linear model is estimated parametrically. The
same results is achieved by using maximum trimmed likelihood estimators (Seo and Yoon, 2013).

Example /. Artificial data (for exploratory analysis)
This example is to illustrate the effectiveness of the exploratory procedure using dynamic plots.
Eighteen observations are generated from the model,

VY=X +X>+1logZ +¢, (3.2)

where covariates X, X;, error term & follow the same distributions as ones in the Example 1, and
variable Z has equally spaced values between 1 and 2. Two outliers, the 19" and 20" observations,
are generated from the mean shifted model defined by adding 2 to the model (3.2). Table 2 contains
the generated data. Applying the suggested method to the generated data, the optimal transformation
is estimated as A = 1 and 8 observations (2,4, 5, 6, 14, 16, 18, 19) are detected as outliers (R> = 0.92?).
Figure 5 shows the augmented partial residual plot and the forward response plot with 4 = 1.
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Figure 4: Dynamic plots with A = 1,0,0.5, 1 (from left).

Table 2: Generated data from the model (3.2)

Case # Xl X2 Z Y Case # X] X2 Z Y
1 7.3 44 1.0 138.9 11 4.6 4.7 1.6 97.5
2 4.7 5.7 1.1 117.1 12 6.0 5.8 1.6 131.7
3 4.2 6.0 1.1 100.6 13 34 4.8 1.7 80.9
4 5.6 7.1 1.2 157.8 14 32 34 1.8 493
5 53 45 1.2 79.0 15 4.0 6.0 1.8 107.4
6 4.2 39 1.3 71.9 16 6.2 4.7 1.9 128.3
7 5.5 53 1.4 118.3 17 5.5 6.0 1.9 151.9
8 6.3 5.2 14 132.3 18 5.3 5.8 2.0 139.9
9 7.2 42 1.5 150.1 19 4.7 4.0 2.0 128.9
10 4.5 45 1.5 98.6 20 52 53 2.0 174.9

From the augmented partial residual plots for many values of A it seemed that the observations
19 and 20 were masked. Figure 6 shows augmented partial residual plots for selected values of A.
When 4 = —1 observations 19 and 20 (marked as x in the plot) are masked by the detected outlier,
observation 14. Observations 19 and 20 seemed out of the trend in augmented partial residual plots
with A = 0 and 0.5.

Considering these information two observations 19 and 20 are deleted from the data and the opti-
mal value of 1 is now estimated as 0.5 (R> = 0.93%). Figure 7 shows the forward response plots with
A = 0.5 after deleting points 19 and 20.

4. Concluding remarks

The problem of outliers detection and response transformation in a partial linear model is difficult to
handle analytically. An exploratory procedure is suggested as a unified method to solve the problem.
A procedure combining outlier detection methods and graphical techniques is proposed to provide
an appropriate variable transformation robust to outliers. Diagnostic measures are calculated from
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(a) Augmented partial residual plot (b) Forward response plot

Figure 5: Dynamic plots with A = 1.

14 14

Figure 6: Augmented partial residual plots with A = —1,-0.5,0, 0.5 (from left). Two x-marked points correspond
to observation 19 and 20 which are not detected as outliers.

(a) Augmented partial residual plot (b) Forward response plot

Figure 7: Dynamic plots with A = 0.5 after deleting observations 19 and 20. The deleted points 19 and 20 are
marked as e.

the data excluding outliers and are plotted. Examples show that it is possible to examine the role of
observations in the diagnostic point of view through the dynamic plots.

The suggested procedure uses a sequential method to detect outliers, an augmented plot for es-
timating a curvature and the forward response plot for observing fitness. The performance of the
proposed procedure depends on outlier detection methods and curvature estimation. If a dataset is
large and has enough repeated observations to estimate E(X|Z) accurately, CERES plots can be a
better tool for estimating a curvature in a partial linear model.
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