• Title/Summary/Keyword: optimal regression model

Search Result 512, Processing Time 0.021 seconds

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

Kernel Regression Estimation for Permutation Fixed Design Additive Models

  • Baek, Jangsun;Wehrly, Thomas E.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.499-514
    • /
    • 1996
  • Consider an additive regression model of Y on X = (X$_1$,X$_2$,. . .,$X_p$), Y = $sum_{j=1}^pf_j(X_j) + $\varepsilon$$, where $f_j$s are smooth functions to be estimated and $\varepsilon$ is a random error. If $X_j$s are fixed design points, we call it the fixed design additive model. Since the response variable Y is observed at fixed p-dimensional design points, the behavior of the nonparametric regression estimator depends on the design. We propose a fixed design called permutation fixed design, and fit the regression function by the kernel method. The estimator in the permutation fixed design achieves the univariate optimal rate of convergence in mean squared error for any p $\geq$ 2.

  • PDF

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression (다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향)

  • Seo, Eun-Kyoung;Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.

Optimal Inflation Threshold and Economic Growth: Ordinal Regression Model Analysis

  • DINH, Doan Van
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.5
    • /
    • pp.91-102
    • /
    • 2020
  • The study investigates the relationship between the inflation rate and economic growth to find out the optimal inflation threshold for economic growth. Therefore, this study applied an ordinary least square model (OLS) and the ordinal regression model, and collected the time-series data from 1996 to 2017 to test the relationship between inflation and economic growth in the short-term and long-term. The sample fits the model and is statistically significant. The study showed that 96.6% of correlation between inflation rate and economic growth are close and 4.5% of optimal inflation threshold is appropriate for economic growth. It finds that the optimal inflation threshold is base to perform economic growth, besides the inflation rate is positively related to economic growth. The results support the monetary policy appropriately. This study identifies issues for Government to consider: have a comprehensive solution among macroeconomic policies, monetary policy, fiscal policy and other policies to control and maintain the inflation and stimulate growth; have appropriate policies to regulate inflation to stimulate economic growth over the long term; set a priority goal for sustainable economic growth; not pursue economic growth by maintaining the inflation rate in the long term, but take appropriate measures to stabilize the inflation at the optimal inflation threshold.

An estimation method based on autocovariance in the simple linear regression model (단순 선형회귀 모형에서 자기공분산에 근거한 최적 추정 방법)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2009
  • In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.

  • PDF

Adaptive Process Decision-Making with Simulation and Regression Models (시뮬레이션과 회귀분석을 연계한 적응형 공정의사결정방법)

  • Lee, Byung-Hoon;Yoon, Sung-Wook;Jeong, Suk-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • This study proposes adaptive decision making method having feed-back structure of regression and simulation models to support the quick decision making of production managers by managing and integrating the mutual relationship among historical data. For that, from historical data that have extracted and accumulated from each process, we first selected major constraint resources that are used as independent variables in regression model. The regression model is designed by using the dependent variables (objectives) that defined above by managers and independent variables selected in previous step and simulation model that are composed of constraint resources is designed. In process of simulation run, we obtain the multiple feasible solutions (alternatives) by using meta-heuristic method. Each solution is substituted by regression equation and we found the optimal solution that is minimum of difference between values obtained by regression model and simulation results. The optimal solution is delivered and incorporated to production site and current operation results from production site is used to generate new regression model after that time.

Development of the Algorithm for Optimizing Wavelength Selection in Multiple Linear Regression

  • Hoeil Chung
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • A convenient algorithm for optimizing wavelength selection in multiple linear regression (MLR) has been developed. MOP (MLP Optimization Program) has been developed to test all possible MLR calibration models in a given spectral range and finally find an optimal MLR model with external validation capability. MOP generates all calibration models from all possible combinations of wavelength, and simultaneously calculates SEC (Standard Error of Calibration) and SEV (Standard Error of Validation) by predicting samples in a validation data set. Finally, with determined SEC and SEV, it calculates another parameter called SAD (Sum of SEC, SEV, and Absolute Difference between SEC and SEV: sum(SEC+SEV+Abs(SEC-SEV)). SAD is an useful parameter to find an optimal calibration model without over-fitting by simultaneously evaluating SEC, SEV, and difference of error between calibration and validation. The calibration model corresponding to the smallest SAD value is chosen as an optimum because the errors in both calibration and validation are minimal as well as similar in scale. To evaluate the capability of MOP, the determination of benzene content in unleaded gasoline has been examined. MOP successfully found the optimal calibration model and showed the better calibration and independent prediction performance compared to conventional MLR calibration.

Optimal fractions in terms of a prediction-oriented measure

  • Lee, Won-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 1993
  • The multicollinearity problem in a multiple linear regression model may present deleterious effects on predictions. Thus, its is desirable to consider the optimal fractions with respect to the unbiased estimate of the mean squares errors of the predicted values. Interstingly, the optimal fractions can be also illuminated by the Bayesian inerpretation of the general James-Stein estimators.

  • PDF

Binary Forecast of Heavy Snow Using Statistical Models

  • Sohn, Keon-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.369-378
    • /
    • 2006
  • This Study focuses on the binary forecast of occurrence of heavy snow in Honam area based on the MOS(model output statistic) method. For our study daily amount of snow cover at 17 stations during the cold season (November to March) in 2001 to 2005 and Corresponding 45 RDAPS outputs are used. Logistic regression model and neural networks are applied to predict the probability of occurrence of Heavy snow. Based on the distribution of estimated probabilities, optimal thresholds are determined via true shill score. According to the results of comparison the logistic regression model is recommended.

Multiple Constrained Optimal Experimental Design

  • Jahng, Myung-Wook;Kim, Young Il
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.619-627
    • /
    • 2002
  • It is unpractical for the optimal design theory based on the given model and assumption to be applied to the real-world experimentation. Particularly, when the experimenter feels it necessary to consider multiple objectives in experimentation, its modified version of optimality criteria is indeed desired. The constrained optimal design is one of many methods developed in this context. But when the number of constraints exceeds two, there always exists a problem in specifying the lower limit for the efficiencies of the constraints because the “infeasible solution” issue arises very quickly. In this paper, we developed a sequential approach to tackle this problem assuming that all the constraints can be ranked in terms of importance. This approach has been applied to the polynomial regression model.