A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.
This paper proposes a method of solving a unit commitment problem using tabu search (TS) which is heuristic algorithm. Ts is a local search method that starts from any initial solution and attempts to determine a better solution using memory structures. In this paper, to reduce the computation time for finding the optimal solution, changing tabu list size as intensification strategy and path relinking method as diversification strategy are proposed. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with priority list, genetic algorithm(GA), and hybrid GA.
This paper presents a new approach which uses $A^*$ search and genetic algorithms for solving large scale multi-objective shortest path problem. The focus of this paper is motivated by the problem of finding Pareto optimal paths for an advanced traveler information system(ATIS) in the context of intelligent transportation system(ITS) application. The individual description, the decoding rule, the selection strategy and the operations of crossover and mutation are proposed for this problem. The keynote points of the algorithm are how to represent individuals and how to calculate the fitness of each individual. The high performance of the proposed algorithm is demonstrated by computer simulations.
This paper presents a first year report of an ongoing multi-year project to develop a systolic parallel simulation system for dynamic traffic assignment. The fundamental approach to the simulation is systolic parallel processing based on autonomous agent modeling. Agents continuously act on their own initiatives and access to database to get the status of the simulation world. Various agents are defined in order to populate the simulation world. In particular existing modls and algorithm were incorporated in designing the behavior of relevant agents such as car-following model headway distribution Frank-Wolf algorithm and so on. Simulation is based on predetermined routes between centroids that are computed off-line by a conventional optimal path-finding algorithm. Iterating the cycles of optimization-then-simulation the proposed system will provide a realistic and valuable traffic assignment. Gangnum-Gu district in Seoul is selected for the target are for the modeling. It is expected that realtime traffic assignment services can be provided on the internet within 3 years.
본 연구에서는 Rotman 렌즈의 위상 오차를 최소화하는 빔 곡선을 구하는 최적화 방법을 제안하고 있다. 이 방법은 빔 포트로부터 배열안테나의 중심점과 배열안테나를 따라 대칭 또는 비대칭으로 놓인 두 개의 점으로 구성된 동위상점들을 통과하여 대응되는 동위상면까지의 3개의 경로길이는 동일하다는 개념에 근거를 두고 있다. 이 방법을 따르면, 각각의 빔 방향에 대하여 위상 오차를 최소화하는 배열안테나 상의 동위상점 집합을 찾으면 최적의 빔 포트 위치를 직접 구할 수 있다. 시뮬레이션 결과는 제안된 방법이 저 위상 오차를 갖는 Rotman 렌즈의 빔 곡선을 구하는 가장 최적이며 효과적인 방법임을 보여준다.
내비게이션 경로탐색 시스템에서 A* 알고리즘을 사용할 경우 경로거리가 멀수록 Open 리스트(최적의 경로를 선택하기 위해 탐색된 예비경로들의 집합)의 크기가 증가하며, 이로 인해 비교연산이 증가하게 된다. 본 논문에서는 Dijkstra의 알고리즘과 A* 알고리즘을 주기적으로 교체 적용하여 Open 리스트의 크기를 줄일 수 있는 검색 방법을 제안한다. 여기서 두 알고리즘을 교체 적용하기 위하여 Level이라는 이름의 파라미터를 사용한다. 미리 정해진 레벨(깊이)만큼 Dijkstra의 알고리즘으로 탐색한 다음 A* 알고리즘으로 교체되도록 한다. 이 때 Dijkstra 알고리즘의 Open 리스트에 있는 노드들을 A* 알고리즘의 평가함수로 적합도를 평가하여 가능성이 있는 노드만을 A* 알고리즘의 Open 리스트로 전달한다. 따라서 계속되는 검색과정에서 Open 리스트의 크기가 불필요하게 증가되는 것을 억제할 수 있다. 또한 Dijkstra와 A* 알고리즘을 번갈아 적용하기 때문에 A* 알고리즘으로는 찾지 못할 최적 또는 준 최적 경로를 Dijkstra의 알고리즘으로 탐색한 결과와 비슷한 수준으로 찾을 수 있게 된다. 제안한 하이브리드 검색 알고리즘을 인공 및 실제의 지도 데이터를 이용하며 실험한 결과, 기존의 탐색 알고리즘과 비슷한 수준의 최단경로거리를 유지하면서 비교연산의 수를 더 줄일 수 있었다. 이 실험에서는 Level 값은 임의로 선정하였다. 따라서 실제의 도로 상황에서 최적 Level 값을 자동 선정하는 연구는 앞으로의 과제이다.
모바일 애드흑 네트워크는 기존의 시스템처럼 인증기관(Certificate Authority)이나 중앙 집중화된 서버를 통해 노드들에 대한 신뢰와 온라인 접근을 제공하지 않는다. 그러나, 시스템의 노드들은 서로 안전하게 데이타를 주고받기 위해서 경로를 탐색하는 것뿐만 아니라, 서로를 신뢰할 수 있게 하는 과정이 반드시 필요하다. 이러한 이유 때문에 온라인 신뢰기관이나 인증 저장 공간을 요구했던 전통적인 보안 구조는 안전한 애드혹 네트워크에는 적합하지 않다. 이에 본 논문에서는 애드흑 네트워크 환경에서 효과적인 플러딩(flooding) 기법을 사용하여 노드 사이에 '안전하고 효과적인 최적의 인증경로탐색기법을 제안한다. 이 시스템은 브로드캐스팅(broadcasting)을 통해 목적지만을 찾는 일반적인 라우팅 프로토콜만을 의미하는 것이 아니라, 통신하고자 하는 노드를 안전하고 효과적으로 탐색하며, 찾아진 경로 또한 그 경로에 있는 노드간의 신뢰를 통해 검증하는 과정을 포함한다.
최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
화상 회의, 원격 진료 및 교육 시스템, CSCW 등과 같은 그룹 응용을 지원하기 위해서는 망에 의해서 멀티캐스트 기능이 제공되어야 한다. 멀티캐스트 경로배정의 방법으로는 보통 최단 경로 트리 방식과 최소 비용 스타이너 트리를 찾기 위해 유전자 알고리즘을 사용하는 진화적 최적화 방법을 제안하고자 한다. 특히 스타이너 트리를 찾기 위해 유전자 알고리즘을 사용하는 진화적 최적화 방법을 제안하고자 한다. 특히 스타이너 트리의 표현에 있어, 일반적인 유전자 알고리즘에서 사용되는 이진 스트링의 개체 표현 대신 트리를 사용하여 개체를 표현하는 방법을 제안함으로써 최적화의 효율을 개선하는 방식을 보여주며, 또한 기존의 경험적 알고리즘과의 비교를 통하여 진화방식에 의한 최적화가 기존의 방법보다 최적해에 더 가까이 수렴할 수 있음을 보여준다.
이기종 컴퓨팅 환경에서 방향성 비순환 그래프(directed acyclic graph DAG)의 효율적인 스케줄링은 시스템의 성능을 높게 만드는데 매우 중요한 역할을 한다. 이기종의 컴퓨팅 환경에서 DAG로 표현되는 프로그램의 최적 스케줄링 방법을 찾는 것은 잘 알려진 '정해진 시간 내에 해결하기 어려운 문제(NP-complete)' 이다. 본 논문은 분산 이기종 컴퓨팅 시스템에서 병렬로 실행 가능한 프로그램을 위한 새로운 리스트 스케줄링 알고리즘인 HRPS(Heterogeneous Rank-Path Scheduling)를 제안하였다. HRPS의 가장 궁극적인 목적은 프로그램의 실행시간을 최소화하는 것이다. 알고리즘의 성능을 위해 DAG 입력 그래프를 이용하여 기존에 제안되어진 CPOP, HCPT, FLB 알고리즘과 스케줄의 길이를 비교한 결과 성능 향상의 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.