• Title/Summary/Keyword: optimal fermentation time

Search Result 166, Processing Time 0.031 seconds

Bioethanol Production from Wasted Corn Stalk from Gangwon Province : from Enzymatic Hydrolysis to Fermentation (강원지역 폐옥수수대로부터 바이오에탄올 생산 : 효소 당화부터 발효까지)

  • Choi, Jae Min;Choi, Suk Soon;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2012
  • Among the samples prepared by various pre-treatment methods, the one pretreated by dilute sulfuric acid showed the highest glucose yield in the enzymatic hydrolysis. Statistical analysis of enzymatic hydrolysis revealed that the glucose yield was in proportion to the enzyme dosage, the ratio of the pre-treated sample to the buffer solution, and the reaction time and that the effect of enzyme dosage was predominant in the experiment range. In addition, the glucose yield was estimated to be 76.1% at an optimal enzymatic hydrolysis condition. In a separate hydrolysis and fermentation (SHF), Saccharomyces cerevisiae converted over 80% of glucose from the enzymatic hydrolysis of pre-treated wasted corn stalk by dilute sulfuric acid to bioethanol with 37% of ethanol yield and 0.42 $g/L{\cdot}hr$ of productivity. In the simultaneous saccharification and fermentation (SSF), 59.5% of conversion from glucan to ethanol and 0.20 $g/L{\cdot}hr$ of productivity were achieved. In both SHF and SSF, approximately 88 g of bioethanol could be obtained from 1 kg of wasted corn stalk. The possible amount of bioethanol in Gangwon province were estimated to be 1.9 kiloton with the assumption of the 50% of collection ratio.

Quality Characteristics of Domestic Wheat White Bread with Substituted Nelumbo nucifera G. Tea Powder (백련차 분말을 대체한 우리밀 식빵의 품질 특성)

  • Kim, Young-Sook;Kim, Mun-Yong;Chun, Soon-Sil
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.448-456
    • /
    • 2008
  • In this study, domestic wheat white breads were prepared with the substitution of 1.5, 3.0, 4.5, and 6.0% Nelumbo nucifera G. tea powder(NNTP). The samples and a control were then compared with regard to quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, external and internal surface appearances, and sensory qualities in order to determine the optimal ratio of NNTP in the formulation. As the NNTP contents increased, the pH of dough and bread, baking loss, and lightness decreased, whereas the total titratable acidity of dough and bread increased. The fermentation power of dough expansion increased with increasing incubation time. The NNTP samples evidenced significantly higher specific volume, greenness, yellowness, resilience, and crumb consistency than were observed in the control group. However, hardness and fracturability evidenced the opposite effect. The water content and uniformity of the crumb pores were highest at a substitution level of 1.5%, and were lowest at a level of 4.5%. Crumb color, flavor, and delicious taste decreased with increasing NNTP contents, whereas lotus leaf flavor, astringency, bitterness, and off-flavor increased. Density of the crumb pore and crumb springiness were not significantly different among the samples. Softness, chewiness, and overall acceptability were maximal with the 1.5% substitution, and were minimal in the 6.0% group. In conclusion, our results demonstrate that $1.5{\sim}3.0%$ NNTP may prove quite useful as a substitute for domestic wheat flour in the production of white bread, and may evidence favorable nutritional and functional properties.

Optimization of Hyaluronidase Inhibition Activity from Prunus davidiana (Carriere) Franch Fruit Extract Fermented by its Isolated Bacillus subtilis Strain SPF4211

  • Kim, Won-Baek;Park, So Hae;Koo, Kyoung Yoon;Kim, Bo Ram;Kim, Minji;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1527-1532
    • /
    • 2016
  • Strain SPF4211, having hyaluronidase (HAase) inhibition activity, was isolated from P. davidiana (Carriere) Franch fruit (PrDF) sugar extract. The phenotypic and biochemical properties based on 16S rDNA sequencing and an API 50 CHB kit suggested that the organism was B. subtilis. To optimize the HAase inhibition activity of PrDF extract by fermentation of strain SPF4211, a central composite design (CCD) was introduced based on three variables: concentration of PrDF extract (X1: 1-5%), amount of starter culture (X2: 1-5%), and fermentation time (X3: 0-7 days). The experimental data were fitted with quadratic regression equations, and the accuracy of the equations was analyzed by ANOVA. The statistical model predicted the highest HAase inhibition activity of 37.936% under the optimal conditions of X1 = 1%, X2 = 2.53%, and X3 = 7 days. The optimized conditions were validated by observation of an actual HAase inhibition activity of 38.367% from extract of PrDF fermented by SPF4211. These results agree well with the predicted model value.

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Influence of Additives on the Yield and Pathogenicity of Conidia Produced by Solid State Cultivation of an Isaria javanica Isolate

  • Kim, Jeong Jun;Xie, Ling;Han, Ji Hee;Lee, Sang Yeob
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.346-352
    • /
    • 2014
  • Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide, because of its increased resistance to some insecticide groups. As an alternative control agent, we selected an Isaria javanica isolate as a candidate for the development of a mycopesticide against the Q biotype of sweet potato whitefly. To select optimal mass production media for solid-state fermentation, we compared the production yield and virulence of conidia between 2 substrates (barley and brown rice), and we also compared the effects of various additives on conidia production and virulence. Barley was a better substrate for conidia production, producing $3.43{\times}10^{10}$ conidia/g, compared with $3.05{\times}10^{10}$ conidia/g for brown rice. The addition of 2% $CaCO_3+2%$ $CaSO_4$ to barley significantly increased conidia production. Addition of yeast extract, casein, or gluten also improved conidia production on barley. Gluten addition (3% and 1.32%) to brown rice improved conidia production by 14 and 6 times, respectively, relative to brown rice without additives. Conidia cultivated on barley produced a mortality rate of 62% in the sweet potato whitefly after 4-day treatment, compared with 53% for conidia cultivated on brown rice. The amendment of solid substrate cultivation with additives changed the virulence of the conidia produced; the median lethal time ($LT_{50}$) was shorter for conidia produced on barley and brown rice with added yeast extract (1.32% and 3%, respectively), $KNO_3$ (0.6% and 1%), or gluten (1.32% and 3%) compared with conidia produced on substrates without additives.

Quality Characteristics of Bread added with Beet Powder (비트 분말을 첨가한 식빵의 품질 특성)

  • Lee, Eun-Jin;Ju, Hyoung-Woog
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • As interest in health has recently increased, many researchers have investigated the utilization of functional foods by confectioneries and bakeries. However, research on loaf bread containing beets has not been conducted. To investigate the optimal ratio of beet in loaf bread containing beet powder, characteristics of loaf bread according to 2%(B2), 4%(B4), and 6%(B6) beet powder per wheat flour were examined. The experimental results were as follows. Fermentation rate was reduced as content of beet powder increased compared with the control, whereas pH levels of dough and loaf bread significantly increased as content of beet powder increased. As content of beet powder increased, volume of loaf bread decreased, whereas specific volume increased. There was no significant difference in volume of loaf bread between the samples. As far as color changes are concerned, as content of beet powder increased, L value decreased, whereas a and b values increased with significant differences between the samples. Characteristics were examined by sensory evaluation of loaf bread containing beet powder. Color of inner texture and peel color of loaf bread significantly increased as content of beet powder increased. Size of air pores was largest in B4, and there was no significant difference in the uniformity of loaf bread between the control and experiment groups. As content of beet powder increased, rigidity of bread was reduced. Control showed the highest elasticity, whereas moisture level was highest in B2 with no significant differences between the samples. The flavor of beet was stronger as content of beet powder increased. In the preference test, B4 showed the highest preference scores for texture, flavor, taste, and overall likeness but not appearance. The experimental results showed that B4 among all control and experimental groups had the most suitable baking characteristics and an optimum content of beet powder. Therefore, B4 can be considered as the most appropriate for making loaf bread containing 4% beet powder in terms of physical and sensory characteristics. This is a new product that satisfies overall sensory preferences and has improved functionality.

Biosynthesis of trifolin, a bioactive flavonoid by biotransformation (생물전환으로 생리활성물질인 trifolin의 생합성)

  • Noh, Hye-Ryeong;Kang, Ju-Yeong;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.309-316
    • /
    • 2021
  • Kaempferol 3-O-galactoside (Trifolin), a member of the flavonol group, has been reported to have anticancer effects against promyelocytic leukemia, histocytic lymphoma, skin melanoma and lung cancer. Trifolin has been extracted and used from several plants, but the extraction process is complicated and the final yield is low. Biotransformation is an alternative tool to produce high value-added chemicals from inexpensive compounds. To synthesis trifolin from naringenin, three genes (PeFLS and OsUGE-PhUGT) were introduced into Escherichia coli, respectively. In order to synthesis trifolin from naringenin, a co-culture fermentation system was established by optimizing the cell concentration, biotransformation temperature and medium, isopropyl-β-D-thiogalactoside (IPTG) concentration, substrate supply concentration, and recombinant protein induction time. The established optimal conditions for trifolin production were a 3:1 ratio of BL-UGTE to BL-FLS, induction of recombinant protein at 25 ℃ for 4 h after addition of 2.0 mM IPTG, biotransformation at 30 ℃, and supply of 300 μM naringenin. Through the optimized co-culture fermentation system, trifolin was biosynthesized up to 67.3 mg/L.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.

Feed Value and Fermentation Quality of Covered Barley Grain Silage with respect to Days after Heading in Honam Region of Korea (호남지역 수확시기에 따른 겉보리 곡실발효사료의 사료가치 및 발효품질)

  • Park, Jong-Ho;Oh, Young-Jin;Cheong, Young-Keun;Song, Tae-Hwa;Park, Tae-Il;Lee, Kwang-Won;Kim, Kyong-Ho;Kim, Yang- Kil;Park, Jong-Chul;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.16-23
    • /
    • 2017
  • This study aimed to determine the optimal harvesting time for covered barley to make grain silage, in Honam region of Korea. We harvested six varieties of barley every third day from 24 to 42 days after heading (DAH). The moisture content decreased from 62.4% at 24 DAH to 24% at 42 DAH. The moisture content at 36 DAH was 44.3%; however, moisture content at 39 and 42 DAH was lower than 40%. Yield of covered barley significantly increased from 24 to 42 DAH (p < 0.05). Yield at 36 DAH (557 kg/10a) was not significantly different from that at 39 and 42 DAH (p < 0.05). With respect to the feed value of barley grain silage, the amount of crude fiber and crude ash was different by harvesting time (p < 0.05). However, the amount of crude protein, crude fat, and total digestible nutrients (TDN) from 24 and 42 DAH was not significantly different. The pH of grain silage from 24 to 42 DAH was between 3.8 and 4.2 and it was stable until 36 DAH (p < 0.05). However, the pH of grain silage at 39 and 42 DAH was 5.2 and 5.8, respectively, which was higher than the pH of silage with good fermentation quality. The lactic acid content of barley grain silage from 24 to 42 DAH decreased from 5.5% to 0.5% (p < 0.05). The amount of lactic acid at 36 DAH was higher than that at 39 and 42 DAH (p < 0.05). With respect to moisture content, yield, feed value, and fermentation, the optimal harvesting time for grain silage of covered barley was 36 DAH. This could increase the use efficiency of harvesting machine for barley and reduce the harvesting time gap between whole barley silage and grain silage in Korea. Moreover, using barley grain silage for animal feed could reduce the import of corn.