• Title/Summary/Keyword: optimal feed rate

Search Result 231, Processing Time 0.021 seconds

Investigation of the Surface Temperature and Cutting Characteristics of Silicon Nitride in Laser-Assisted Machining (Laser-assisted machining에서 질화규소 시편의 표면온도와 절삭특성에 관한 연구)

  • Im, Se-Hwan;Lee, Je-Hun;Sin, Dong-Sik;Kim, Jong-Do;Kim, Ju-Hyeon
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • In laser-assisted machining (LAM), laser beam is used to locally increase the temperature of a workpiece and thus to enhance the machinability. In order to set the temperature of the material removal area of a workpiece at an optimal value, process parameters, such as laser power, feed rate, and rotational velocity, have to be carefully controlled. In this work, the effects of laser power and feed rate on the temperature distribution of a silicon nitride rotating at a constant velocity were experimentally investigated. Using a pyrometer, temperatures at various locations of the silicon nitride were measured both in circumferential and axial directions. The measured temperatures were fitted to a quadratic equation to approximate the temperature at the cutting location. The machining results showed that cutting force and tool wear were decreased when the temperature at the cutting location was increased.

  • PDF

Surface Roughness for the Machining of Inclined Planes of Aluminum (알루미늄 경사면 절삭의 표면거칠기)

  • Han, Jeong-Sik;Jung, Jong-Yun;Moon, Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.11-18
    • /
    • 2008
  • Surface roughness is an important factor to evaluate machined parts in precision machining. This is the major measure of surface quality. This research sets up experiments to select the factors which affect surface roughness in the machining of inclined planes of aluminum. The levels of the selected experimental factors are chosen to evaluate the relationship between the surface roughness of the machined parts and machining parameters. This is to find out the optimal machining condition in the inclined planes. The objective of this research is to improve the surface roughness of the machined products by using the ANOVA analysis. The factors for the experiments are cutting speed, feed rate, cutting depth, and cutting width. The experimental levels of the factors are two for the cutting depth and width. For the cutting speed and feed rate, their levels are three because they are more sensitive for the surface roughness than the other two. The inclined planes are machined by 5-axis machining equipment.

Performance Evaluation of Five-DOF Motion under Static and Dynamic Conditions of Ultra-precision Linear Stage (초정밀 직선 스테이지에서 5 자유도 운동의 정적 및 동적 성능 평가)

  • Lee, Jae-Chang;Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • In this study, the five-DOF motion at ultra-precision linear stage under static and dynamic conditions are evaluated through the extending application of ISO 230-2. As the performance factors, the bi-directional accuracy and repeatability of the five-DOF motion are quantitatively evaluated with the measurement uncertainties which are determined using the standard uncertainty of equipment used in experiment. The motion under static condition are analyzed using geometric errors. The five geometric errors except the linear displacement error are measured using optimal measurement system which is designed to enhance the standard uncertainty of geometric errors. In addition, the motion under dynamic conditions are analyzed with respect to the conditions with different feed rate of the stage. The experimental results shows that the feed rate of stage has a significant effect on straightness motions.

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L.;Xiang, Jia Y.;Dong, Hu Y.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.513-524
    • /
    • 2015
  • In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Effects of Amino Acid Supplementation on Growth Performance for Weanling, Growing and Finishing Pigs

  • Li, D.F.;Guan, W.T.;Yu, H.M.;Kim, J.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Four feeding trials with 260 pigs were conducted to evaluate the effects of supplementing the diet with different amino acids on growth performance and blood metabolites for weanling, growing and finishing pigs. One hundred twenty weanling pigs (Exp. 1, BW 8 kg), eighty growing pigs (Exp. 2. BW 20 kg), thirty growing pigs (Exp. 3, BW 29 kg) and thirty finishing pigs (Exp. 4, BW 50 kg) were randomly allotted to different dietary treatments according to sex and body weight. Pigs weight and feed consumption were measured at initiation and termination of each trial with 4 weeks. At the end of trial, blood samples from three pigs selected in each pen (Exp. 1) and each pig (Exp. 2) were obtained to determine the level of blood urea nitrogen, glucose, insulin and cortisol in the serum. In Exp. 1, pigs fed diet supplemented both with lysine and methionine had the best feed conversion ratio (p < 0.05), but no significant differences (p > 0.05) were observed in ADG and ADFI. Pigs receiving control diet obtained the obtained the optimal ADG (p < 0.05), ADFI (p < 0.05) and F/G for the whole period. No differences were detected in serum glucose, insulin and cortisol concentrations. In Exp. 2, pigs receiving the control diet exhibited the lowest serum urea nitrogen (p < 0.05), ADG, F/G and serum insulin concentration increased linearly (p < 0.05) with the inclusion of lysine, methionine, threonine and tryptophan in diets. No significant differences (p > 0.05) were detected for glucose and cortisol content in pigs serum among dietary treatments. In Exp. 3 and 4, pigs growth rate increased linearly (p < 0.01), and feed conversion efficiency was also improves by addition of lysine, methionine, threonine and tryptophan. In conclusion, pigs fed diets supplemented with lysine, methionine, threonine and tryptophan together obtained optimal growth performance in growing and finishing periods.

A Study on the Grade Efficiency of Sturtevant Type Air Classifier (스터테반트 공기분급기의 분리효율에 대한 연구)

  • 정인기;박시우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.773-781
    • /
    • 2004
  • This research was Performed to raise grade efficiency of Sturtevant type air classifier. to treat powder less than $74\mu\textrm{m}$ particle produced at the crushing process of the dry aggregates manufacturing system or concrete wastes recycling system. The experimental conditions were in the ranges. 0.85 to 5.15 $m^3$/s of primary air flow rate. 0.005 to 0.015 $m^3$/s of secondary air flow rate $30^{\circ}$ to $70^{\circ}$ of auxiliary blades angle. respectively. for 1.7~3.3 kg/min of the powder feed rate. It was found that the grade efficiency of the air classifier was increased as the baffle plate was attached at the expansion region. and the optimal operating conditions of the air flow rates and the blade angle were obtained. The fractional recovery curves from the experiments were well agreement with the theoretical one of Molerus model.

Optimal Operation Scale of Hog Production for Farrow-to-Finish Farms

  • Huang, Y.H.;Lee, Y.P.;Yang, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1326-1330
    • /
    • 2001
  • This study analyzed the lowest production cost and the greatest profit to be obtained from marketing hogs to determine the optimal operation scale for family-owned farrow-to-finish farms. Data were collected from 39 farrow-to-finish farms with 500 to 5,000 inventories for two consecutive years, and treated with GLM and quadratic regression models using the REG procedure. Analysis results indicated that farms capable of marketing 2,933 and 3,286 hogs annually had the lowest production cost and the greatest profit, respectively. Further analysis attributed the lowest production cost or the highest return in farms with an optimal scale of 3,000 to a higher survival rate of the herd, as well as lower expenses in veterinary medicine, labor, utilities and fuel, transportation, and depreciation. A similar feed conversion efficiency was observed for all the farms studied. Obviously, the cost efficiencies were associated with the economy of the operation scale of hog production until it reached 3,000 hogs marketed annually for a family-run unit. Beyond the optimal scale of 3,000 hogs, good stockmanship was more difficult to maintain and the herd management deteriorated as increasing mortality confirms. It is conclude that, unless advanced management is applied, the operation scale should not expand beyond 3,000 hogs.

Optimization of high-speed machining process using constrained R-T characteristic curve (절삭률-공구수명 특성 곡선을 이용한 고속가공 공정의 최적화에 관한 연구)

  • 최용철;김동우;장윤상;조명우;허영무
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.100-105
    • /
    • 2003
  • With the recent development of machining technology, high speed machining process is widely used for-the mold and difficult-to -cut-materials machining since it allows achieving high productivity and surface quality. However, during the high speed machining process, high cutting speed and feed rate can cause abrupt tool life decrease due to rapid rising of the cutting tool temperature. Such situation may cause increase of machining cost. Thus, in this study, developed optimization algorithm is applied to determine optimal machining variables for multiple high speed machining. The R-T characteristic curve for machining economics problems with a linear-lorarithmic tool life model is determined by applying sensitivity analysis. finally, a series of high speed machining experiments are performed to determine the desired optimal machining variables, and the results are analyzed.

  • PDF

Determination of the Cutting Condition in High Speed-Machining Considering the Machining Efficiency (볼 엔드밀의 고속가공에서 가공능률을 고려한 가공조건의 선정)

  • 손창수;강명창;이득우;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.965-969
    • /
    • 1997
  • Due to the high feed rate,high speed machining (HSM) provide a great potential of rationalization for the machining Dies and Moulds. But determination of cutting condition is very difficult, because cutting mechanism of high speed machining is very complicated,especially using ball end-mill. This paoer gives a report on selection of the optimal cutting condition to improve the machining efficiency, And optimal machining condition is determined through the cutting force, FFT analysis of cutting force and surface roughness according to the cutting condition. Based on this experiment result,wear process and machining characteristics are evaluated.

  • PDF

A Study on Optimal Cutting Conditions of MQL Milling Using Response Surface Analysis (반응표면분석을 이용한 MQL 밀링가공의 최적절삭조건에 관한 연구)

  • Lee, Ji-Hyung;Ko, Tae-Jo;Baek, Dae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Semi dry cutting known as MQL (Minimum Quantity Lubrication) machining is widely spreaded into the machining shops nowadays. The objective of this research is to suggest how to derive optimum cutting conditions for the milling process in MQL machining. To reach these goals, a bunch of finish milling experiments was carried out while varying cutting speed, feed rate, oil quantity, depth of cut and so on with MQL. Then, response surface analysis was introduced for the variance analysis and the regression model with the experimental data. Finally, desirability function based on regression model was used to obtain optimal cutting parameters and verification experiment was done.