• Title/Summary/Keyword: optimal estimate

Search Result 1,149, Processing Time 0.03 seconds

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF

Partial AUC and optimal thresholds (부분 AUC와 최적분류점들)

  • Hong, Chong Sun;Cho, Hyun Su
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.187-198
    • /
    • 2019
  • Extensive literature exists on how to estimate optimal thresholds based on various accuracy measures using receiver operating characteristic (ROC) and cumulative accuracy profile (CAP) curves. This paper now proposes an alternative measure to represented the specific partial area under the ROC and CAP curves. The relationship between ROC and CAP functions is examined using differential equations of the new defined partial area under curves. In addition, the relationship with the optimal thresholds under conditions of various accuracy measures for the ROC and CAP functions is also derived. We assume there are two kinds of distribution functions composing the mixed distribution as various normal distributions before finding the optimal thresholds. Corresponding type 1 and 2 errors are also explored and discussed under various conditions for accuracy measures.

Optimal threshold using the correlation coefficient for the confusion matrix (혼동행렬의 상관계수를 이용한 최적분류점)

  • Hong, Chong Sun;Oh, Se Hyeon;Choi, Ye Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • The optimal threshold estimation is considered in order to discriminate the mixture distribution in the fields of Biostatistics and credit evaluation. There exists well-known various accuracy measures that examine the discriminant power. Recently, Matthews correlation coefficient and the F1 statistic were studied to estimate optimal thresholds. In this study, we explore whether these accuracy measures are appropriate for the optimal threshold to discriminate the mixture distribution. It is found that some accuracy measures that depend on the sample size are not appropriate when two sample sizes are much different. Moreover, an alternative method for finding the optimal threshold is proposed using the correlation coefficient that defines the ratio of the confusion matrix, and the usefulness and utility of this method are also discusses.

Estimation of Rebate Level for Energy Efficiency Programs Using Optimization Technique (최적화 기법을 이용한 에너지 효율 프로그램의 지원금 수준 산정)

  • Park, Jong-Jin;So, Chol-Ho;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.369-374
    • /
    • 2008
  • This paper presents the evaluation procedures and the estimation method for the estimation of optimal rebate level for EE(Energy Efficiency) programs. The penetration amount of each appliance is estimated by applying price function to preferred diffusion model resulted from model compatibility test. To estimate the optimal rebate level, two objective functions which express the maximum energy saving and operation benefit are introduced and by multi-objective function which can simultaneously consider two objective functions the optimal rebate level of each appliance is estimated. And then, using the decided rebate level and each penetration amount, the priority order for reasonable investment of each high-efficiency appliance is estimated compared to the results of conventional method. Finally, using a benefit/cost analysis based on California standard practice manual, the economic analysis is implemented for the four perspectives such as participant, ratepayer impact measure, program administrator cost and total resource cost.

A Study on Optimal Subgroup Size in Estimating Variance of Small Autocorrelated Samples (소표본 자기상관 자료의 분산 추정을 위한 최적 부분군 크기에 대한 연구)

  • Lee, Jong-Seon;Lee, Jae-June;Bae, Soon-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • In statistical process control, it is assumed that the process data are independent. However, most of chemical processes such as semi-conduct processes do not satisfy the assumption because of presence of autocorrelation between process data. It causes abnormal out of control signal in the process control and misleading estimation in process capability. In this study, we adopted Shore's method to solve the problem and propose an optimal subgroup size to estimate the variance correctly for AR(1) processes. Especially, we focus on finding an actual subgroup size for small samples based on simulation study.

To study of optimal subgroup size for estimating variance on autocorrelated small samples (소표본 자기상관 자료의 분산 추정을 위한 최적 부분군 크기에 대한 연구)

  • Lee, Jong-Seon;Lee, Jae-Jun;Bae, Soon-Hee
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.302-309
    • /
    • 2007
  • To conduct statistical process control needs the assumption that the process data are independent. However, most of chemical processes, like a semi-conduct processes do not satisfy the assumption because of autocorrelation. It causes abnormal out of control signal in the process control and misleading process capability. In this study, we introduce that Shore's method to solve the problem and to find the optimal subgroup size to estimate variance for AR(l) model. Especially, we focus on finding an actual subgroup size for small samples using simulation. It may be very useful for statistical process control to analyze process capability and to make a Shewhart chart properly.

  • PDF

Optimal design of a piezoelectric passive damper for vibrating plates

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.42-49
    • /
    • 2006
  • In this paper, an efficient piezoelectric passive damper is newly devised to suppress the multi-mode vibration of plates. To construct the passive damper, the piezoelectric materials are utilized as energy transformer, which can transform the mechanical energy to electrical energy. To dissipate the electrical energy transformed from mechanical energy, multiple resonant shunted piezoelectric circuits are applied. The dynamic governing equations of a coupled electro-mechanical piezoelectric with multiple piezoelectric patches and multiple resonant shunted circuits is derived and solved for the one edge clamped plate. The equations of motion of the piezoelectrics and shunted circuits as well as the plate are discretized by finite element method to estimate more exactly the effectiveness of the piezoelectric passive damper. The method to find the optimal location of a piezoelectric is presented to maximize effectiveness for desired modes. The electro-mechanical coupling term becomes important parameter to select the optimal location.

QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

  • Deka, Bhupen;Deka, Ram Charan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.717-737
    • /
    • 2014
  • We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^2(L^2)$ and $L^2(H^1)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^2(L^2)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.

Case Studies on the Optimal Parameter Design with Respect to Categorial Characteristics (범주형 품질특성의 최적설계 사례연구)

  • Park, Jong-In;Bae, Suk-Joo;Kim, Man-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.135-141
    • /
    • 2009
  • A variety of statistical methods are applied to model and optimize responses, related to product or system's quality, in terms of control and noise factors at design and manufacturing stages. Most of them assume continuous response variables but, assessing the performance of a product or system often involves categorical observations, such as ratings and scores. Although most previous works to deal with the categorical data provide sorhisticated response models and ensure unbiased outcomes, they require heavy computation to estimate the model parameters, as well as enough replications. In this study, we present some practical approaches for optimal parameter design with ordered categorical response when only a few or no replication is available. Two real-life examples are given to illustrate the presented methods.

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF