Abstract
A variety of statistical methods are applied to model and optimize responses, related to product or system's quality, in terms of control and noise factors at design and manufacturing stages. Most of them assume continuous response variables but, assessing the performance of a product or system often involves categorical observations, such as ratings and scores. Although most previous works to deal with the categorical data provide sorhisticated response models and ensure unbiased outcomes, they require heavy computation to estimate the model parameters, as well as enough replications. In this study, we present some practical approaches for optimal parameter design with ordered categorical response when only a few or no replication is available. Two real-life examples are given to illustrate the presented methods.