• Title/Summary/Keyword: optimal design technique

Search Result 981, Processing Time 0.028 seconds

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

Design Technique of SR Machine for Hydraulic Pump System using Combined CAD and Genetic Algorithm (유전자 알고리즘과 상용 설계도구를 이용한 유압 펌프 시스템용 SRM 설계기법)

  • Ahn, Jin-Woo;Lee, Dong-Hee;Kim, Tae-Hyoung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.369-373
    • /
    • 2006
  • In this paper, an optimal method for determining design parameters of a Switched Reluctance Motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD program. The simulated design method is compared with conventional procedure.

A Study on the Parameter Design of Multiple Characteristics Considering Characteristical Importance (특성치 중요도를 고려한 다중특성치 파라미터 설계에 관한 연구)

  • 김용범;조용욱;김우열
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.2
    • /
    • pp.62-72
    • /
    • 1999
  • Taguchi´s parameter design is to determine the optimal settings of design parameters of a product or a process such that the characteristics of a product exhibit small variabilities around their targer values. His analysis of the problem has focused only on a single characteristic or response. However the quality of most products is seldom defined by a characteristic, and is rather the composite of a great number of characteristics which are often interrelated and nearly always measured in a variety of units. The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this paper, Methodology using SN ratio optimized by unvariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. One existing case study is solved by the proposed method and the results are compared with ones by the sum of SN ratios, the expected weighted loss, the desirability functions, and EXTOPSIS model.

  • PDF

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure (빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계)

  • Lee, Jun-Bae;Kim, Tae-Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • This paper presents the multi-objective optimal design of thermopile sensor having beam or membrane structure. The thermopile sensor is composed of $Si_{3}N_{4}/SiO_{2}$ dielectric membrane, Al-polysilicon thermocouples and $RuO_{2}$ thin film for black body. The sensing method is based on the Seebeck effect which is originated from the temperature difference of the two positions, black body and silicon rim. The objective functions of the presented design are sensitivity, detectivity and thermal time constant. The modelling of the sensor is proposed including the package. The multi-objective optimization technique is applied to the design of the sensor not only inspecting the modelling equation but also simulating mathematical programming method. Especially, fuzzy optimization technique is adapted to get the optimal solution which enables the designer to reach the more practical solution. The design constraint of the voltage output originated from the change of the environmental temperature is included for practical use.

  • PDF

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Design to reduce Torque Ripple using Experimental Design in IPM BLDC Motor (실험 계획법을 이용한 IPM BLDC 전동기의 토크리플 저감 설계)

  • Lee, Sang-Ho;Kim, Sung-Il;Lee, Ji-Young;Hong, Jung-Pyo;Kim, Young-Kyoun;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1111-1113
    • /
    • 2005
  • This paper deals with optimal design technique to reduce torque of IPM BLDC motor having concentrated winding. Optimization process using experimental design method which is one of the design technique is explained. Finally, the validity of experimental design method is proved by the results between prototype and optimization model.

  • PDF

Robust Control of Maglev Vehicles with Multimagnets Using Separate Control Techniques

  • Park, Jeon-Soo;Kim, Jong-Shik;Lee, Jin-Kul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1240-1247
    • /
    • 2001
  • A robust control design scheme using well-developed SISO techniques is proposed for maglev vehicles that are inherently unstable MIMO systems. The proposed separate control method has basically two control loops: a stabilizing loop by a pole-placement technique, and a performance loop using a novel optimal LQ loop-shaping technique. This paper shows that the coupling terms involved in maglev vehicles with multimagnets should not be neglected but compensated for their stability and performance robustness. The robustness properties of the proposed control system are then evaluated under variations of vehicle masses and air gaps through a computer simulation. This paper also describes the reason why the proposed control technique can be suggested as a tool using only SISO techniques in controlling unstable MIMO systems such as maglev vehicles.

  • PDF

Optimal Fuzzy Sliding-Mode Control for Microcontroller-based Microfluidic Manipulation in Biochip System

  • Chung, Yung-Chiang;Wen, Bor-Jiunn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.196-201
    • /
    • 2004
  • In biometric and biomedical applications, a special transporting mechanism must be designed for the ${\mu}$TAS (micro total analysis system) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, this study presents an optimal fuzzy sliding-mode control (OFSMC) design based on the 8051 microprocessor and implementation of a complete microfluidic manipulated system implementation of biochip system with a pneumatic pumping actuator, a feedback-signal photodiodes and flowmeter. The new microfluid management technique successfully improved the efficiency of molecular biology reaction by increasing the velocity of the target nucleic acid molecules, which increases the effective collision into the probe molecules as the target molecules flow back and forth. Therefore, this hybridization chip was able to increase hybridization signal 6-fold and reduce non-specific target-probe binding and background noises within 30 minutes, as compared to conventional hybridization methods, which may take from 4 hours to overnight. In addition, the new technique was also used in DNA extraction. When serum existed in the fluid, the extraction efficiency of immobilized beads with solution flowing back and forth was 88-fold higher than that of free-beads.

  • PDF

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.