• Title/Summary/Keyword: optimal code

Search Result 648, Processing Time 0.041 seconds

Decision Statistics for Noncoherent Serial PN Code Acquisition In Chip-Asynchronous DS/SS Systems (칩비동기 직접수열 대역확산 시스템에서 비동기 직렬 의사잡음코드 포착을 위한 결정통계량)

  • 윤석호;김선용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.19-25
    • /
    • 2004
  • In this paper, we propose optimal and suboptimal serial code acquisition schemes for chip-asynchronous direct-sequence spread-spectrum systems. The conventional serial code acquisition scheme is to compare each value of correlator outputs with a threshold individually. However, such a scheme is optimum only under the chip-synchronous assumption which is actually very difficult to be held prior to acquisition at the receiver because the signal-to-noise ratios before despreading are very low. In this paper, an optimal serial code acquisition scheme is derived based on the maximum-likelihood criterion under the more realistic and general chip-asynchronous environments. A suboptimal scheme, which is simpler but yields comparable performance to the optimal one, is also derived based on the criterion of local detection power Numerical results show that, under the chip-asynchronous environments, both the optimal and suboptimal serial code acquisition schemes outperform the conventional serial code acquisition scheme.

Development of CAD tool for optimal spot weld joints (점용접 위치의 최적화를 위한 CAD Tool 개발)

  • Ryu, Si-Uk;Lee, Jong-Chan;Lee, Tae-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.148-159
    • /
    • 1998
  • Spot welding palys a key role in increasing productivity and weight reduction of the final products. This paper proposes a systematic approach on the design of spot weld configuration, dealing with the requried number and location of spot weld joints under the given design parameters, such as the applied loads, lap area, and individual spot weld strength. The optimal design of a spot-welded joint is postulated as a state when the safety factors of all spot weld points (i) are evenly distributed and (ii) reach maximum value. A CAD program is developed to arrange the optimal location of each spot weld based on the derived objective function and constraints. The CAD tool integrates the optimization procedure with Finite Element Analysis (FEA) code through an interface. The interface automatically provides geometrical data and mesh configuration for different spot weld locations to FEA model. It also extracts the transmitted load of each spot weld from the FEA code, and allows the optimization code predict an improved arrangement of spot weld locations. The feasibility of the developed approach is demonstrated by the selected examples.

A Study on the Optimal Operation Schemes for Large-scale Wind Farm (대규모 풍력 발전 단지의 최적운영 방안 연구)

  • Jeon, Young-Soo;Choy, Young-Do
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.365-371
    • /
    • 2009
  • This paper studies the optimal operation schemes for large scale wind farm. With few operation experiences and fundamental technology for the wind farm, there is a difficult to establish the grid code which is the standard for connecting wind farm to power system. Analysis of the grid code and the operation of other nations for wind farm is used to propose the optimal operation schemes for large-scale wind farm considering the characteristic of our power system, by analyzing the influence of power system by wind farm at Cheju island.

The Structure and Performance of Turbo decoder using Sliding-window method (슬라이딩 윈도우 방식의 터보 복호화기의 구조 및 성능)

  • 심병효;구창설;이봉운
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.116-126
    • /
    • 2000
  • Turbo codes are the most exciting and potentially important development in coding theory in recent years. They were introduced in 1993 by Berrou, Glavieux and $Thitimajshima,({(1)}$ and claimed to achieve near Shannon-limit error correction performance with relatively simple component codes and large interleavers. A required Eb/N0 of 0.7㏈ was reported for BER of $10^{-5}$ and code rate of $l/2.^{(1)}$ However, to implement the turbo code system, there are various important details that are necessary to reproduce these results such as AGC gain control, optimal wordlength determination, and metric rescaling. Further, the memory required to implement MAP-based turbo decoder is relatively considerable. In this paper, we confirmed the accuracy of these claims by computer simulation considering these points, and presented a optimal wordlength for Turbo code design. First, based on the analysis and simulation of the turbo decoder, we determined an optimal wordlength of Turbo decoder. Second, we suggested the MAP decoding algorithm based on sliding-window method which reduces the system memory significantly. By computer simulation, we could demonstrate that the suggested fixed-point Turbo decoder operates well with negligible performance loss.

  • PDF

An Accurate Estimation of Channel Loss Threshold Set for Optimal FEC Code Rate Decision (최적의 FEC 부호율 결정을 위한 정확한 채널손실 한계집합 추정기법)

  • Jung, Tae-Jun;Jeong, Yo-Won;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.268-271
    • /
    • 2014
  • Conventional forward error correction (FEC) code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and require the typical process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we propose a simple but accurate joint source-channel distortion model to estimate channel loss threshold set for optimal FEC code rate decision.

A Code Assignment Algorithm for Microinstructions (마이크로 명령어의 코드 할당 알고리즘)

  • Kim, H.R.;Kim, C.S.;Hong, I.S.;Lim, J.Y.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.587-590
    • /
    • 1988
  • In the case of VLSI computer system control unit design using PLA, optimal state code assignment algorithm to minimize the PLA area is proposed. An optimal state code assignment algorithm which considers output state and logic minimization simultaneously is proposed, and by means of this, algorithm product term is minimized. Also, by means of this algorithm running time and memory capacitance is decreased as against heuristic state code assignment algorithm which uses matrix calculation and considers the constraint relation only. This algorithm is implemented on VAX 11/750 (UNIX4.3BSD). Through the various test example applied proposed algorithm, the efficiency of this algorithm is shown.

  • PDF

Optimal Bit Split Methods and Performance Analysis for Applying to Multilevel Modulation of Iterative Codes (반복 부호의 다치 변조방식 적용을 위한 최적의 비트 분리 방법 및 성능평가)

  • Bae, Jong-Tae;Jung, Ji-Won;Choi, Seok-Soon;Kim, Min-Hyuk;Chang, Dae-Ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.216-225
    • /
    • 2007
  • This paper presents bit splitting methods to apply multilevel modulation to iterative codes such as turbo code, low density parity check code and turbo product code. Log-likelihood ratio method splits multilevel symbols to bits using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and implement hardware due to exponential and log calculation. therefore this paper presents Euclidean, MAX and Sector method to reduce the high complexity of LLR method. We propose optimal bit splitting method for three iterative codes.

A Performance of Complementary Code Keying Codes

  • Lee Yu Sung;Park Hyun Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.645-648
    • /
    • 2004
  • In this paper, we drive a theoretical performance of complementary code keying (CCK) codes on additive white Gaussian noise (AWGN) channel. The CCK codes can be demodulated by the optimal maximum likelihood decoding method and sub-optimal correlation magnitude decoding algorithm. We calculate the bit error rate (BER) and symbol or codeword error rate (SER) of the CCK codes using the above mentioned two decoding algorithms. To derive the error performance, we use the weigh distributions and cross-correlation distributions of CCK codes.

  • PDF

Optimal Packet Length with Energy Efficiency for Sensor Networks (센서 네트워크상에서 에너지 효율성을 고려한 최적 패킷 길이)

  • Choi Sung-Hye;Joe InWhee
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.111-114
    • /
    • 2004
  • Sensor networks are deployed with a limited energy source. Thus, energy efficient design can be challenging. This paper has been studied optimal packet length with energy efficiency for sensor networks. And using Power Management can not improve energy efficiency. Power Management is turning off transceiver when transceiver is idle statue. We show that BCH code for error control can improve energy efficiency better than Convolutional code.

  • PDF

Impacts of Non-Uniform Source on BER for SSC NOMA (Part I): Optimal MAP Receiver's Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.39-47
    • /
    • 2021
  • Lempel-Ziv coding is one of the most famous source coding schemes. The output of this source coding is usually a non-uniform code, which requires additional source coding, such as arithmetic coding, to reduce a redundancy. However, this additional source code increases complexity and decoding latency. Thus, this paper proposes the optimal maximum a-posteriori (MAP) receiver for non-uniform source non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC). First, we derive an analytical expression of the bit-error rate (BER) for non-uniform source NOMA with SSC. Then, Monte Carlo simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform source. Moreover, we also show that the BER of an approximate analytical expression is in a good agreement with the BER of Monte Carlo simulation. As a result, the proposed optimal MAP receiver for non-uniform source could be a promising scheme for NOMA with SSC, to reduce complexity and decoding latency due to additional source coding.