• Title/Summary/Keyword: optimal code

Search Result 648, Processing Time 0.03 seconds

Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant (정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석)

  • Song K. S.;Oh S. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • We used In-line orifice mixer for efficient chemicals mixing in water treatment. The method of using In-line orifice mixer has been already proved the improvement of water treatment efficiency. Code of computational fluid dynamics for numerical analysis was performed using FLUENT, a commercial code. As variable for exactly standardizing, a proper ratio between an outer diameter of deflector and a diameter of pipe, the distance between deflector and orifice, a determination of orifice diameter fur an optimal mixing, a distance between injection nozzle's position and cone, Numerical study has been performed for optimal standard and analyzed flow field on a basis of turbulent intensity in an orifice downstream.

  • PDF

Optimal Location of Meteorological Mast for Power Curve Verification of Wind Farm (풍력단지 출력 검증을 위한 기상탑의 최적위치 선정)

  • Oh, Ki-Yong;Lee, Jun-Shin;Park, Joon-Young;Lee, Jae-Kyung;Kim, Ji-Young
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The performance test of a wind turbine in a wind farm is generally carried out by the owner to verify the power curve of the wind turbine given by the turbine manufacturer. The international electro-technical commission provides the IEC 61400-12-1 standard on "Power performance measurements of electricity producing wind turbines". By using this code, one can easily find the suitable met-mast (meteorological mast) location for the wind data whether a wind farm is potential or already built. In this paper, the valid sectors for wind turbines installed in the HanKyoung wind farm, south-west in Jeju island are analyzed on the basis of the code by considering the wind farm layout. Among these sectors, the optimal met-mast location is presented for the power curve verification of the wind farm.

  • PDF

A robust genetic algorithm for structural optimization

  • Chen, S.Y.;Rajan, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.313-336
    • /
    • 2000
  • The focus of this paper is on the development and implementation of a methodology for automated design of discrete structural systems. The research is aimed at utilizing Genetic Algorithms (GA) as an automated design tool. Several key enhancements are made to the simple GA in order to increase the efficiency, reliability and accuracy of the methodology for code-based design of structures. The AISC-ASD design code is used to illustrate the design methodology. Small as well as large-scale problems are solved. Simultaneous sizing, shape and topology optimal designs of structural framed systems subjected to static and dynamic loads are considered. Comparisons with results from prior publications and solution to new problems show that the enhancements made to the GA do indeed make the design system more efficient and robust.

A Technique to Apply Inlining for Code Obfuscation based on Genetic Algorithm (유전 알고리즘에 기반한 코드 난독화를 위한 인라인 적용 기법)

  • Kim, Jung-Il;Lee, Eun-Joo
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.167-177
    • /
    • 2011
  • Code obfuscation is a technique that protects the abstract data contained in a program from malicious reverse engineering and various obfuscation methods have been proposed for obfuscating intention. As the abstract data of control flow about programs is important to clearly understand whole program, many control flow obfuscation transformations have been introduced. Generally, inlining is a compiler optimization which improves the performance of programs by reducing the overhead of calling invocation. In code obfuscation, inlining is used to protect the abstract data of control flow. In this paper, we define new control flow complexity metric based on entropy theory and N-Scope metric, and then apply genetic algorithm to obtain optimal inlining results, based on the defined metric.

Real-time Integrated Timeslot and Code Allocation Scheme for the CDMA/TDD System Supporting Voice and Data Services (음성 및 데이터 서비스를 지원하는 CDMA/TDD 시스템을 위한 실시간 통합 타임슬롯 및 코드 할당 체계)

  • Chang, Kun-Nyeong;Lee, Ki-Dong
    • Korean Management Science Review
    • /
    • v.25 no.2
    • /
    • pp.25-42
    • /
    • 2008
  • CDMA/TOD with asymmetric capacity allocation between uplink and downlink is a highly attractive solution to support the next generation mobile systems. This is because flexible asymmetric allocation of capacity to uplink and downlink usually improves the utilization of the limited bandwidth. In this paper, we mathematically formulate an optimal timeslot and code allocation problem, which is to maximize the total utility considering the numbers of codes(channels) allocated to each data class and the forced terminations of previously allocated codes. We also suggest a real-time integrated timeslot and code allocation scheme using Lagrangean relaxation and subgradient optimization techniques. Experimental results show that the proposed scheme provides high-quality solutions in a fast time.

On Optimal PN Code Acquisition (최적화된 PN Code Acquisition에 대한 연구)

  • Jang, U-Jin
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.23-25
    • /
    • 1998
  • Many of the currently used PN code acquisition algorithms detect the phase of the incoming PN signal on the basis of ML estimation principle and utilize statistics grounded in taking inner products. By showing that any set of 2n-1 PN sequences arising in SSRG or MSRG (those typically used in IS'95 implementations) configuration constitutes a linearly independent set and that the number of candidate PN sequences has to equal the dimension of the span of the candidate PN sequences, we prove that the lowerbounding computational complexity involved in any PN code acquistion, utilizing (only) inner product computations at each stage of acquisition, corresponds precisely to those, such as double dwell acquistion circuitries, currently used.

  • PDF

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

An Optimal State-Code Assignment Algorithm of Sequential Circuits for VLSI Design Automation Systems (VLSI 설계자동화 시스템을 위한 순서회로의 최적상태코드 할당 알고리듬)

  • Lim, Jae-Yun;Lim, In-Chil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.104-112
    • /
    • 1989
  • A design automation method for sequential circuits implementation by mans of PLA is discussed, and an optimal state-code assignment algorithm to minimize the PLA area is proposed. In order to design sequential circuit automatically, DASL (Design Automation Support Language) [8] which is easy to describe and powerful to synthesize, is proposed and used to describe sequential circuit, An optimal statecode assignment algorithm which considers next states and outputs simultaneously is proposed, and by adopting this algorithm to various examples, the area of PLA is reduced by 10% comparing privious methods. This system is constructed to design microinstruction, FSM, VLSI control part synthesis.

  • PDF