• Title/Summary/Keyword: optimal band

Search Result 551, Processing Time 0.028 seconds

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

A study on the Cost-effective Architecture Design of High-speed Soft-decision Viterbi Decoder for Multi-band OFDM Systems (Multi-band OFDM 시스템용 고속 연판정 비터비 디코더의 효율적인 하드웨어 구조 설계에 관한 연구)

  • Lee, Seong-Joo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.90-97
    • /
    • 2006
  • In this paper, we present a cost-effective architecture of high-speed soft-decision Viterbi decoder for Multi-band OFDM(MB-OFDM) systems. In the design of modem for MB-OFDM systems, a parallel processing architecture is general]y used for the reliable hardware implementation, because the systems should support a very high-speed data rate of at most 480Mbps. A Viterbi decoder also should be designed by using a parallel processing structure and support a very high-speed data rate. Therefore, we present a optimized hardware architecture for 4-way parallel processing Viterbi decoder in this paper. In order to optimize the hardware of Viterbi decoder, we compare and analyze various ACS architectures and find the optimal one among them with respect to hardware complexity and operating frequency The Viterbi decoder with a optimal hardware architecture is designed and verified by using Verilog HDL, and synthesized into gate-level circuits with TSMC 0.13um library. In the synthesis results, we find that the Viterbi decoder contains about 280K gates and works properly at the speed required in MB-OFDM systems.

Optimal Band Selection Techniques for Hyperspectral Image Pixel Classification using Pooling Operations & PSNR (초분광 이미지 픽셀 분류를 위한 풀링 연산과 PSNR을 이용한 최적 밴드 선택 기법)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2021
  • In this paper, in order to improve the utilization of hyperspectral large-capacity data feature information by reducing complex computations by dimension reduction of neural network inputs in embedded systems, the band selection algorithm is applied in each subset. Among feature extraction and feature selection techniques, the feature selection aim to improve the optimal number of bands suitable for datasets, regardless of wavelength range, and the time and performance, more than others algorithms. Through this experiment, although the time required was reduced by 1/3 to 1/9 times compared to the others band selection technique, meaningful results were improved by more than 4% in terms of performance through the K-neighbor classifier. Although it is difficult to utilize real-time hyperspectral data analysis now, it has confirmed the possibility of improvement.

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

Analysis of Transceiver Structure and Experimental Results of Underwater Acoustic Communication Using the Sub-band (부 대역을 이용한 수중 음향 통신 송수신 구조 및 실험 결과 분석)

  • Jeong, Hyun-Woo;Shin, Ji-Eun;Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.545-555
    • /
    • 2020
  • This paper presented efficient transceiver structure using sub-band processing for underwater communication in terms of covertness and performance improvement. In aspect of covertness, encrypted coded-bits are divided into groups, and center frequency and sub band are determined by coded-bits of each group. Therefore, as center frequencies are changed randomly, it maintain the covertness effectively. In aspect of performance improvement, the performance of underwater communication mainly depends on multi-path propagation characteristics, Doppler-spread, and frame synchronization. Accordingly, in order to overcome these effects, non-coherent energy detector and turbo equalization method are employed in receiver side. Furthermore, optimal frame synchronization was proposed. Through the simulation and lake experiment, performance analysis was conducted. Especially in the lake experiment, as a result of applying optimal frame synchronization method to receiver structure, errors are corrected in most frames.

Clinical Outcome of a Precontoured Symphysis Pubis Plate with Tension Band Wiring for Traumatic Symphysis Pubis Rupture in Pelvic Fractures

  • Lee, Jeong Moon;Yoon, Sun Jung;Park, Myung Sik;Song, Kyung Jin
    • Journal of Trauma and Injury
    • /
    • v.29 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • Purpose: The optimal method of fixation of symphysis pubis (SP) diastasis in pelvic ring injuries is still controversial. In this study, we investigated the radiological and the clinical results of a precontoured 4.5-mm symphysis pubis (SP) plate with tension band wiring (TBW) after an anterior pelvic injury in pelvic fractures. Methods: We treated 25 patients with traumatic SP diastasis by open reduction and internal fixation with plates and wires. We used a four-hole 4.5-mm precontoured SP plate with a tension band wiring. Results: Patients with a SP with TBW fixation achieved excellent or good results at final follow-up. Post-operative complications included two (8%) patients with metal work movement. The mean symphyseal width was smaller in 4.5 mm SP plate with TBW during 1-year follow up period. Conclusion: A precontoured symphysis pubis plate (4.5 mm) with figure-of-eight fashion tension band wiring shows favorable radiological results, excellent or good clinical outcome, and a lower complication (hardware failure and revision surgery).

The optimal bandwidth allocation in multiplexing Voice/nonvoice traffic (음성/비음성트래픽을 위한 최적 대역폭 설계에 관한 연구)

  • Kim, Jae-Yeol;Lee, Kwan-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.514-518
    • /
    • 1988
  • The switching system and transport will be developed and serve as hybrid switching system and link respectively according to the needs of mixed voice and data service in ISDN era. This paper describes a theory of optimal band width allocation in multiplexing voice and nonvoice traffic, and analyzes traffic performances on a model network.

  • PDF

A study on weighting algorithm of multi-band transmission method using an estimated BER (추정 BER을 이용한 다중 밴드 전송 기법의 가중치 알고리즘 연구)

  • Shin, Ji-Eun;Jeong, Hyun-Woo;Jung, Ji-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.359-369
    • /
    • 2021
  • In underwater communications, to compensate performance degradation induced from rapidly changing channel transfer characteristic, multi-band communication method which allocate the same data to different frequency bands is used. However, the multi-band configuration may have worse performance than the single-band one because performance degradation in a particular band affects the output from the entire bands. This problem can be solved through a receiving end that analyzes error rates of each band, sets threshold values and allocates lower weights to inferior bands. Therefore, this paper proposed a weighting algorithm based on estimated Bit Error Rate (BER) which analyzes reliability of received data based on the performance difference between demodulated and decoded data. Employing turbo codes with coding rate of 1/3, we evaluate the performance of the proposed weighted multi-band transmission model in real underwater environments based on optimal simulation parameters. Through the sea trial experiment, we confirmed error performance was improved by applying the proposed weighting algorithm.

A Study of BWE-Prediction-Based Split-Band Coding Scheme (BWE 예측기반 대역분할 부호화기에 대한 연구)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.309-318
    • /
    • 2008
  • In this paper, we discuss a method for efficiently coding the high-band signal in the split-band coding approach where an input signal is divided into two bands and then each band may be encoded separately. Generally, and especially through the research on the artificial bandwidth extension (BWE), it is well known that there is a correlation between the two bands to some degree. Therefore, some coding gain could be achieved by utilizing the correlation. In the BWE-prediction-based coding approach, using a simple linear BWE function may not yield optimal results because the correlation has a non-linear characteristic. In this paper, we investigate the new coding scheme more in details. A few representative BWE functions including linear and non-linear ones are investigated and compared to find a suitable one for the coding purpose. In addition, it is also discussed whether there are some additional gains in combining the BWE coder with the predictive vector quantizer which exploits the temporal correlation.

Design and Implementation of the GHz-Band Wide (2~18 GHz) Linear Equalizer

  • Kahng, Sung-Tek;Ju, Jeong-Ho;Moon, Won-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2007
  • This paper presents a linear amplitude equalizer developed to secure the linearity of the slope of the amplitude over the frequency band ranging $2\sim18\;GHz$. The circuit model is featured by the resistor placed between each pair of a transmission-line and a stub. The design includes finding the values of resistors and stubs to have the optimal linear slope and return loss performances. The measured data show the acceptable performances of the slope variation and return loss over $2\sim18\;GHz$.